用户名: 密码: 验证码:
基于同化数据的标准化土壤湿度指数监测农业干旱的适宜性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Suitability of assimilated data-based standardized soil moisture index for agricultural drought monitoring
  • 作者:周洪奎 ; 武建军 ; 李小涵 ; 刘雷震 ; 杨建华 ; 韩忻忆
  • 英文作者:ZHOU Hongkui;WU Jianjun;LI Xiaohan;LIU Leizhen;YANG Jianhua;HAN Xinyi;Key Laboratory of Environment Change and Natural Disaster, Ministry of Education, Beijing Normal University;Faculty of Geographical Science, Beijing Normal University;
  • 关键词:农业干旱 ; 标准化土壤湿度指数 ; 适宜性 ; 黄淮海平原
  • 英文关键词:agricultural drought;;standardized soil moisture index;;suitability;;Huang-Huai-Hai Plain
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:北京师范大学环境演变与自然灾害教育部重点实验室;北京师范大学地理科学学部;
  • 出版日期:2018-12-21 16:37
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(41671424);; 教育部创新团队资助项目(IRT1108)
  • 语种:中文;
  • 页:STXB201906033
  • 页数:12
  • CN:06
  • ISSN:11-2031/Q
  • 分类号:318-329
摘要
农业干旱是导致作物减产的主要灾害之一,及时、准确地监测农业干旱状况有助于制定区域减灾策略,降低灾害损失。标准化土壤湿度指数(SSMI)是基于历史土壤湿度时间序列构建的一种农业干旱指数,目前分析该指数监测农业干旱的适宜性研究十分缺乏。本文以黄淮海平原为研究区,利用数据同化的根区土壤湿度数据构建SSMI,并通过与标准化降水蒸散指数(SPEI)、农业干旱灾害记录数据的对比以及与冬小麦产量的关系分析,综合评价SSMI监测农业干旱的适宜性。结果表明,SSMI与SPEI具有良好的一致性,二者之间具有极显著相关关系(P<0.001);利用SSMI识别的农业干旱与农气站点干旱灾害记录是基本一致的,SSMI能够有效反映干旱发生、发展直至减轻的演变过程;冬小麦生长季SSMI与减产率显著相关,利用SSMI识别的农业干旱发生区域与基于统计数据计算的减产区域基本相符,SSMI能够对农业干旱引起的冬小麦减产起到一定的指示作用。综上所述,基于同化数据构建的SSMI能够反映黄淮海平原的农业干旱状况,利用SSMI监测区域农业干旱状况是适宜的。研究可为基于土壤湿度的农业干旱监测业务化运行提供依据,为黄淮海平原的抗旱减灾提供科学参考。
        Drought is a recurring extreme climate event. Frequent droughts have serious impacts on agriculture and threaten food security. The Huang-Huai-Hai(HHH) Plain is one of the most important food-producing areas in China, and agricultural drought is one of the main factors leading to the decline of grain production in this region. Therefore, accurate and effective agricultural drought monitoring is of great significance to develop disaster mitigation strategies and reduce disaster losses. The standardized soil moisture index(SSMI) is an agricultural drought index based on historical soil moisture time series. Currently, the suitability of SSMI for monitoring agricultural drought is scarce. In previous studies, an agricultural drought index was mainly evaluated by comparisons with other commonly used drought indices or meteorological elements. Only a few studies considered the drought disaster records and the impact of drought on crop yield. In this study, the SSMI was established by using the assimilated root zone soil moisture to monitor agricultural drought in the HHH Plain. The SSMI-based results showed that several drought events occurred between 2002 and 2010. Of these droughts, the moderate or extreme droughts occurred in 2002, 2004, and 2006, matching well with the reality. Subsequently, the suitability of the SSMI was evaluated by comparing with the standardized precipitation-evapotranspiration index(SPEI), agricultural drought records, and winter wheat yield. The results showed that the average correlation coefficient between the SSMI and SPEI was 0.52, indicating a significant correlation(P<0.001). As a whole, the SSMI and SPEI showed good agreement, which could accurately identify large-scale agricultural droughts. From a regional perspective, the SSMI could effectively track drought occurrence, evolution, and mitigation. The comparisons at site scales showed that the SSMI-based drought results were consistent with the drought records of agro-meteorological sites, and the SSMI could accurately monitor the intensity of agricultural drought. Crop yield is the ultimate performance of the crops affected by drought, and the relationship between the drought index and crop yield is an important aspect of testing the effectiveness of a drought index. We observed that the SSMI was closely related to the winter wheat yield loss ratio, and the SSMI-based drought areas generally existed in accordance with the statistical data-based yield reduction areas. To some extent, the SSMI provided an indication of the drought-induced yield reduction. In summary, the assimilated data-based SSMI could effectively reflect the drought conditions in the HHH Plain, and it was highly appropriate to use the SSMI to monitor agricultural drought. This study will facilitate the operational soil moisture-based agricultural drought monitoring and provide a scientific reference for drought prevention and mitigation in the HHH Plain.
引文
[1] Tubiello F N,Soussana J F,Howden S M.Crop and pasture response to climate change.Proceedings of the National Academy of Science of the United States of America,2007,104(50):19686- 19690.
    [2] Geng G P,Wu J J,Wang Q F,Lei T J,He B,Li X H,Mo X H,Luo H Y,Zhou H K,Liu D C.Agricultural drought hazard analysis during 1980- 2008:a global perspective.International Journal of Climatology,2016,36(1):389- 399.
    [3] Crow W T,Kumar S V,Bolten J D.On the utility of land surface models for agricultural drought monitoring.Hydrology and Earth System Sciences,2012,16(9):3451- 3460.
    [4] Panu U S,Sharma T C.Challenges in drought research:some perspectives and future directions.Hydrological Sciences Journal,2002,47(S1):S19-S30.
    [5] Martínez-Fernández J,González-Zamora A,Sánchez N,Gumuzzio A.A soil water based index as a suitable agricultural drought indicator.Journal of Hydrology,2015,522:265- 273.
    [6] Mozny M,Trnka M,Zalud Z,Hlavinka P,Nekovar J,Potop V,Virag M.Use of a soil moisture network for drought monitoring in the Czech Republic.Theoretical and Applied Climatology,2012,107(1/2):99- 111.
    [7] 李柏贞,周广胜.干旱指标研究进展.生态学报,2014,34(5):1043- 1052.
    [8] Mishra A K,Ines A V M,Das N N,Prakash Khedun C,Singh V P,Sivakumar B,Hansen J W.Anatomy of a local-scale drought:application of assimilated remote sensing products,crop model,and statistical methods to an agricultural drought study.Journal of Hydrology,2015,526:15- 29.
    [9] Sridhar V,Hubbard K G,You J S,Hunt E D.Development of the soil moisture index to quantify agricultural drought and its "User Friendliness" in severity-area-duration assessment.Journal of Hydrometeorology,2008,9(4):660- 676.
    [10] Hunt E D,Hubbard K G,Wilhite D A,Arkebauer T J,Dutcher A L.The development and evaluation of a soil moisture index.International Journal of Climatology,2009,29(5):747- 759.
    [11] Carr?o H,Russo S,Sepulcre-Canto G,Barbosa P.An empirical standardized soil moisture index for agricultural drought assessment from remotely sensed data.International Journal of Applied Earth Observation and Geoinformation,2016,48:74- 84.
    [12] Wang Q F,Shi P J,Lei T J,Geng G P,Liu J H,Mo X Y,Li X H,Zhou H K,Wu J J.The alleviating trend of drought in the Huang-Huai-Hai Plain of China based on the daily SPEI.International Journal of Climatology,2015,35(13):3760- 3769.
    [13] Wang Q F,Wu J J,Li X H,Zhou H K,Yang J H,Geng G P,An X L,Liu L Z,Tang Z H.A comprehensively quantitative method of evaluating the impact of drought on crop yield using daily multi-scale SPEI and crop growth process model.International Journal of Biometeorology,2017,61(4):685- 699.
    [14] 徐建文,居辉,梅旭荣,刘勤,杨建莹.近30年黄淮海平原干旱对冬小麦产量的潜在影响模拟.农业工程学报,2015,31(6):150- 158.
    [15] Bolten J D,Crow W T.Improved prediction of quasi-global vegetation conditions using remotely-sensed surface soil moisture.Geophysical Research Letters,2012,39(19):L19406.
    [16] Bolten J D,Crow W T,Zhan X W,Jackson T J,Reynolds C A.Evaluating the utility of remotely sensed soil moisture retrievals for operational agricultural drought monitoring.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2010,3(1):57- 66.
    [17] Natural Resources Conservation Service.National irrigation guide//National Engineering Handbook.Somerset,NJ:NRCS,2005.
    [18] Vicente-Serrano S M,Begueria S,López-Moreno J I.A multiscalar drought index sensitive to global warming:the standardized precipitation evapotranspiration index.Journal of Climate,2010,23(7):1696- 1718.
    [19] Seiler R A,Hayes M,Bressan L.Using the standardized precipitation index for flood risk monitoring.International Journal of Climatology,2002,22(11):1365- 1376.
    [20] Allen R G,Pereira L S,Raes D,Smith M.Crop Evapotranspiration:Guidelines for Computing Crop Water Requirements.Rome,Italy:FAO,1998.
    [21] 王兆礼,李军,黄泽勤,钟睿达,陈佳颖,邱卓辉.基于改进帕默尔干旱指数的中国气象干旱时空演变分析.农业工程学报,2016,32(2):161- 168.
    [22] Vicente-Serrano S M,Beguería S,López-Moreno J I,Angulo M,El Kenawy A.A new global 0.5° gridded dataset (1901- 2006) of a multiscalar drought index:comparison with current drought index datasets based on the palmer drought severity index.Journal of Hydrometeorology,2010,11(4):1033- 1043.
    [23] 中国气象局.GB/T 32136- 2015 农业干旱等级.北京:中国标准出版社,2016.
    [24] Qin Y,Yang D W,Lei H M,Xu K,Xu X Y.Comparative analysis of drought based on precipitation and soil moisture indices in Haihe basin of North China during the period of 1960- 2010.Journal of Hydrology,2015,526:55- 67.
    [25] McKee T B,Doesken N J,Kleist J.The relationship of drought frequency and duration to time scales//Proceedings of the 8th Conference on Applied Climatology.Boston,MA:American Meteorological Society,1993.
    [26] World Meteorological Organization (WMO).Standardized Precipitation Index User Guide.WMO-No.1090,Geneva:WMO,2012.
    [27] Zhou H K,Wu J J,Geng G P,Li X H,Wang Q F,Lei T J,Mo X Y,Liu L Z.Enhancing the ability of a soil moisture-based index for agricultural drought monitoring by incorporating root distribution.Journal of the American Water Resources Association,2017,53(6):1409- 1423.
    [28] Zhou H K,Wu J J,Wang Q F,Mo X Y,Lei T J,Geng G P,Li X H.A simple method to estimate irrigation date for soil moisture modeling and agricultural drought monitoring in irrigated regions//Drought:Research and Science-Policy Interfacing.Leiden:CRC Press,2015:225- 230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700