用户名: 密码: 验证码:
水平井偏心环空低速顶替运移机制研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of the Transport Mechanism of Low-speed Displacement in Eccentric Annulus of Horizontal Wells
  • 作者:孙劲飞 ; 李早元 ; 罗平亚 ; 张刚刚 ; 焦少卿
  • 英文作者:SUN Jinfei;LI Zaoyuan;LUO Pingya;ZHANG Ganggang;JIAO Shaoqing;State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation,Southwest Petroleum University;Sinopee Southwest Oil & Gas Company;
  • 关键词:水平井 ; 偏心度 ; 顶替流速 ; 顶替效率 ; 流动界面
  • 英文关键词:horizontal well;;eccentricity;;displacement flow rate;;displacing efficiency;;flow interface
  • 中文刊名:XNSY
  • 英文刊名:Journal of Southwest Petroleum University(Science & Technology Edition)
  • 机构:"油气藏地质及开发工程"国家重点实验室·西南石油大学;中国石化西南油气分公司;
  • 出版日期:2018-09-26 10:11
  • 出版单位:西南石油大学学报(自然科学版)
  • 年:2019
  • 期:v.41;No.192
  • 基金:国家科技重大专项(2016ZX05062);; 四川省科技计划项目(2015SZ0003-004)
  • 语种:中文;
  • 页:XNSY201901011
  • 页数:8
  • CN:01
  • ISSN:51-1718/TE
  • 分类号:114-121
摘要
水平井固井顶替过程中,受限于现场设备,难以实现紊流顶替,而在层流流速区间内,两相流体在偏心环空中运移机制复杂。基于计算流体动力学方法,建立几何模型和数值模型,采用流体体积法对两相流体顶替界面进行追踪,研究了不同顶替流速下水平井偏心环空流体运移机制。结果表明,(1)低偏心度下,1倍隔离液用量能够实现90%顶替效率,而当偏心度大于0.5时,顶替效率相对较低,即使增加隔离液用量,也未能提高顶替效率;(2)针对套管严重偏心情况,将流速由1.0m/s降低到0.2m/s,有助于界面平稳发展,并多置换出6.8%钻井液,解决窄边滞留,宽边指进问题;(3)水平井偏心环空固井注替过程存在偏心效应、重力效应、黏滞效应等多方面影响,这些因素相互制约、相互作用,因此,针对现场实际井况,合理设计固井工艺参数,不仅能提高固井质量,还能起到降本增效的作用。
        When displacing the cementing of horizontal wells, it is usually difficult to realize the replacement in turbulent flow because of instrumental limitation. In laminar flow, however, the transport mechanism of two-phase flow in the eccentric annulus can be quite complex. Based on the computational fluid dynamics method, we developed a geometric and numerical model,tracked the displacement interface of two-phase flow using the fluid volume method, and analyzed the transport mechanism of displacing fluids in the eccentric annulus of horizontal wells under various displacing flow rates. The following conclusions are drawn from the results:(1) With a low eccentricity, one-time use of isolation fluid can realize 90% displacing efficiency. When the eccentricity is greater than 0.5, the displacing efficiency becomes relatively small. In this case, increasing the amount of isolation fluids cannot further increase the displacing efficiency;(2) Considering the severe eccentricity of the casing, reducing the flow rate from 1.0 m/s to 0.2 m/s can help stabilize the interface and results in 6.8%higher displacement of drilling oil.Furthermore, this approach can also resolve the retention issue on the narrow side and pointing issue on the wide side;(3) The cementing displacement process in the eccentric annulus of horizontal wells is affected by multiple factors, including the eccentric effect, gravity effect, and viscous effect. These factors interact and inhibit with each other. Therefore, a reasonable design of cementing process parameters based on the actual well conditions on site can not only improve cementing quality, but also reduce cost and increase efficiency.
引文
[1]刘崇建.油气井注水泥理论与应用[M].北京:石油工业出版社,2001.LIU Chongjian. Theory and application of oil and gas cementing theory[M]. Bejing:Petroleum Industry Press,2001.
    [2]罗恒荣,张晋凯,周仕明,等.偏心度和密度差耦合条件下水平井顶替界面特征研究[J].石油钻探技术,2016, 44(4):65-71. doi:10.11911/syztjs.201604012LUO Hengrong, ZHANG Jinkai, ZHOU Shiming, et al.Horizontal well cement displacement interface under the coupling of eccentricity and density difference[J]. Petroleum Drilling Techniques, 2016, 44(4):65-71. doi:10.11911/syztjs.201604012
    [3]高永海,孙宝江,刘东清,等.环空水泥浆顶替界面稳定性数值模拟研究[J].石油学报,2005,6(5):119-122.doi:10.3321/j.issn:0253-2697.2005.05.027GAO Yonghai, SUN Baojiang, LIU Dongqing, et al. Numerical simulation on stability of cement displacement interface in annulus[J]. Acta Petrolei Sinica, 2005, 26(5):119-122. doi:10.3321/j.issn:0253-2697.2005.05.027
    [4]杨建波,邓建民,冯予淇,等.低速注水泥时密度差对顶替效率影响规律的数值模拟研究[J].石油钻探技术,2008, 36(5):62-65. doi:10.3969/j.issn.1001-0890.2008.05.016YANG Jianbo, DENG Jianmin, FENG Yuqi, et al. Numerical simulation of effect of density difference on displacement efficiency at low cement slurry velocity[J].Petroleum Drilling Techniques, 2008, 36(5):62-65. doi:10.3969/j.issn.1001-0890.2008.05.016
    [5]方春飞,周仕明,李根生,等.井径不规则性对固井顶替效率影响规律研究[J].石油机械,2016, 44(10):1-5. doi:10.16082/j.cnki.issn.1001-4578.2016.10.001FANG Chunfei, ZHOU Shiming, LI Gensheng, et al. Study on influence law of borehole rugosity on cementing displacement efficiency[J]. China Petroleum Machinery, 2016, 44(10):1-5. doi:10.16082/j.cnki.issn.1001-4578.2016.10.001
    [6]张晋凯,周仕明,方春飞.偏心效应对赫巴流体环空流动特性的影响[J].石油机械,2015, 43(9):19-23. doi:10.16082/j.cnki.issn. 1001-4578.2015.09.005ZHANG Jinkai, ZHOU Shiming, FANG Chunfei. Eccentricity effect on herschel-bulkley fluid flow in annulus[J].China Petroleum Machinery, 2015,43(9):19-23. doi:10.-16082/j.cnki.issn.1001-4578.2015.09.005
    [7]冯福平,艾池,崔志华,等.水平井偏心环空顶替流体密度差优化[J].石油钻采工艺,2014, 36(1):61-65.doi:10.13639/j.odpt.2014.01.016FENG Fuping, AI Chi, CUI Zhihua, et al. Density difference optimization of displacing fluids in eccentric annulus of horizontal wells[J]. Oil Drilling&Production Technology, 2014, 36(1):61-65. doi:10.13639/j.odpt.2014.01.-016
    [8]冯福平,邓平,邢均,等.水平井偏心环空稳定顶替界面形状研究[J].断块油气田,2015,22(1):120-125.doi:10.6056/dkyqt201501027FENG Fuping,DENG Ping, XING Jun,et al.Research on interface shape of steady-state displacement in eccentric annulus of horizontal well[J]. Fault-Block Oil&Gas Field,2015,22(1):120-125. doi:10.6056/dkyqt201501027
    [9]张晋凯,周仕明,陶谦,等.套管低偏心度下的水泥浆顶替界面特性研究[J].石油机械,2016, 44(7):1-6.doi:10.16082/j.cnki.issn.1001-4578.2016.07.001ZHANG Jinkai, ZHOU Shiming, TAO Qian, et al. Cement displacement interface characteristics under low casing eccentricity in horizontal well[J]. China Petroleum Ma-chinery, 2016, 44(7):1-6. doi:10.16082/j.cnki.issn.1001-4578.2016.07.001
    [10]ZULQARNAIN M, TYAGI M. The effect of constant and variable eccentricity on the spacer performance during primary well cementing[C]//ASME 2014, International Conference on Ocean, Offshore and Arctic Engineering, 2014.doi:10.1115/OMAE2014-24686
    [11]ZULQARNAIN M, TYAGI M. Development of simulations based correlations to predict the cement volume fraction in annular geometries after fluid displacements during primary cementing[J]. Journal of Petroleum Science&Engineering,2016,145:1-10. doi:10.1016/j.petrol.2016.-03.012
    [12]SHI Jing,GOURMA M,YEUNG H. CFD simulation of horizontal oil-water flow with matched density and medium viscosity ratio in different flow regimes[J]. Journal of Petroleum Science&Engineering, 2017, 151:373-383.doi:10.1016/j.petrol.2017.01.022
    [13]BU Yuhuan, LI Zhibin, WAN Chunhao, et al. Determination of optimal density difference for improving cement displacement efficiency in deviated wells[J]. Journal of Natural Gas Science&Engineering, 2016, 31:119-128.doi:10.1016/j.jngse.2016.03.008
    [14]VAUGHN R D, GRAC W R. Axial laminar flow of nonNewtonian fluids in narrow eccentric annuli[J]. SPE Journal, 1965, 5(4), 277-280. doi:10.2118/1138-PA
    [15]GUILLOT D, DESROCHES J, FRIGAARD I. Are preflushes really contributing to mud displacement during primary cementing?[C]. SPE 105903-MS, 2007. doi:10.2118/105903-MS
    [16]OZBAYOGLU E M, OMURLU C. Analysis of the effect of eccentricity on the flow characteris tics of annular flow of non-newtonian fluids using finite element method[C].SPE 100147-MS, 2006. doi:10.2118/100147-MS
    [17]SAVERY M, DARBE R, CHIN W. Modeling fluid interfaces during cementing using a 3D mud displacement simulator[C]. OTC 18513-MS,2007. doi:10.4043/18513-MS
    [18]MORAN L, SAVERY M. Fluid movement measurements through eccentric annuli:Unique results uncovered[C].SPE 109563-MS, 2007. doi:10.2118/109563-MS
    [19]郑力铭.ANSYS Fluent15.0流体计算从入门到精通:升级版[M].北京:电子工业出版社,2015.ZHENG Liming. ANSYS Fluent 15.0 fluid calculation from introduction to mastery:updated edition[M]. Beijing:Electronic Industry Press, 2015.
    [20]孙宁.钻井手册[M].北京:石油工业出版社,2013.SUNNing. Drilling manual[M]. Beijing:Petroleum Industry Press, 2013.
    [21]张健,方杰,范波芹.VOF方法理论与应用综述[J].水利水电科技进展,2005,25(2):67-70. doi:10.3880/j.-issn.1006-7647.2005.02.019ZHANG Jian, FANG Jie, FAN Boqin. Advances in research of VOF method[J]. Advances in Science&Technology ofWater Resources, 2005, 25(2):67-70. doi:10.3880/j.-issn.1006-7647.2005.02.019
    [22] HIRT C W, NICHOLS B D. Volume of fluid(VOF)method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225. doi:10.1016/-0021-9991(81)90145-5
    [23]李明忠,王成文,王长权,等.大斜度井偏心环空注水泥顶替数值模拟研究[J].石油钻探技术,2012, 40(5):40-44. doi:10.3969/j.issn.1001-0890.2012.05.009LI Mi ngzhong,WANG Cheng wen,WANG Changquan,et al. Numerical simulation of cement displacement in eccentric annulus at highly deviated well[J]. Petroleum Drilling Techniques.2012.40(5):40-44. doi:10.3969/j.issn.1001-0890.2012.05.009
    [24]李明忠,王成文,高剑玮,等.大斜度井注水泥顶替界面理论模型分析与数值求解[J].水动力学研究与进展A辑,2015(4):466-472. doi:10.16076/j.cnki.cjhd.-2015.04.016LI Mingzhong,WANG Cheng wen.GAO Jianwei.et al. Analysis and numerical solution of cementing displacement interface theoretical model in highly deviated well[J]. Chinese Journal of Hydrodynamics, 2015(4):466-472. doi:10.16076/j.cnki.cjhd.2015.04.016
    [25]李建新,冯松林,李明忠,等.影响固井注水泥顶替效率的主要问题及其研究进展[J].断块油气田,2016,23(3):393-396. doi:10.6056/dkyqt201603027LI Jianxin, FENG Songlin, LI Mingzhong, et al. Main problems affecting cementing displacement efficiency and respective research progress[J]. Fault-Block Oil&Gas Field, 2016, 23(3):393-396. doi:10.6056/dkyqt201603-027
    [26]王瑞和,李明忠,王成文,等.油气井注水泥顶替机理研究进展[J].天然气工业,2013, 33(5):69-76. doi:10.3787/j.issn.1000-0976.2013.05.013WANG Ruihe.LI Mingzhong,WANG Chengwen,et al.Research progress in the cementing displacement mech-anism[J]. Natural Gas Industry, 2013, 33(5):69-76. doi:10.3787/j.issn.1000-0976.2013.05.013

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700