用户名: 密码: 验证码:
不同粒径磁铁矿的多羧酸改良光-芬顿体系应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of Magnetite with Different Particle Sizes in Polycarboxylic Acid Modified Heterogeneous Photo-Fenton System
  • 作者:黄影 ; 罗梦琦 ; 宋雄伟 ; 张健 ; 黄闻宇
  • 英文作者:HUANG Ying;LUO Mengqi;SONG Xiongwei;ZHANG Jian;HUANG Wenyu;College of Resources, Environment and Materials, Guangxi University;Key Laboratory of Cleaner pulping and Papermaking and Pollution Control in Guangxi;
  • 关键词:磁铁矿 ; 乙二胺-N ; N'-二琥珀酸 ; 光-Fenton ; 降解 ; 双酚A
  • 英文关键词:magnetite;;EDDS;;photo-Fenton;;degradation;;bisphenol A
  • 中文刊名:SCLJ
  • 英文刊名:Technology of Water Treatment
  • 机构:广西大学资源环境与材料学院;广西清洁化制浆造纸与污染控制重点实验室;
  • 出版日期:2019-04-22 10:00
  • 出版单位:水处理技术
  • 年:2019
  • 期:v.45;No.327
  • 基金:国家自然基金资助项目(21367003);; 广西科技重大专项(桂科AA17129001);; 广西清洁化制浆造纸与污染控制重点实验室开放基金(KF201724)
  • 语种:中文;
  • 页:SCLJ201904017
  • 页数:6
  • CN:04
  • ISSN:33-1127/P
  • 分类号:77-82
摘要
研究利用乙二胺-N,N'-二琥珀酸(EDDS)与强磁性的磁铁矿络合成Fe(Ⅲ)-EDDS配合物,在模拟太阳光下与H_2O_2作用生成大量的羟基自由基,用于降解目标底物双酚A(BPA)。结果表明,pH=7.0,粒径100~300 nm的磁铁矿体系中,磁体矿投加量0.8 g/L,EDDS、H_2O_2的浓度分别为0.5、0.5 mmol/L时,11 h后BPA的降解率为50.33%;pH=7.0,粒径20 nm的磁铁矿体系中,磁铁矿投加量0.8 g/L,EDDS、H_2O_2的浓度分别为1.5、0.5 mmol/L时,反应11 h后,BPA的降解率为58.76%。2个降解体系中,磁铁矿、EDDS和H_2O_2均存在适宜的含量。BPA在中性和碱性条件下均有一定程度降解,说明EDDS的添加在一定程度上克服了传统Fenton法适用pH范围窄的缺陷。
        The ethylenediamine-N,N '-disuccinic acid(EDDS) in combination with magnetite to form Fe(Ⅲ)-EDDS complexes interacting with H_2O_2 under simulated sunlight to generate large amounts of hydroxyl radicals, in order to degrade the target substrate bisphenol A(BPA). The results showed that,when under the conditions of magnetite dosage was 0.8 g/L, concentration of EDDS and H_2O_2 was 0.5 mmol/L and 0.5 mmol/L respectively in magnetite system with 100~300 nm particle size, the removal efficiency of BPA reached 50.33% at pH 7.0 after 11 h; While in the magnetite system with 20 nm particle size, under the conditions of magnetite dosage was 0.8 g/L, concentration of EDDS and H_2O_2 was 1.5 mmol/L and 0.5 mmol/L respectively, BPA removal efficiency was 58.76% at pH 7.0 after 11 h degradation. In both degradation systems, the optimum content of magnetite, EDDS, and H_2O_2 was exist,BPA could be degraded at neutral or alkaline conditions, which indicated that the addition of EDDS could overcome the limit of pH in Fenton application.
引文
[1]刘晶冰,燕磊,白文荣,等.高级氧化技术在水处理的研究进展[J].水处理新技术,2011,37(3):11-17.
    [2]BAI,YANG W.Enhanced phytoextraction of EDTA and EDDS in polluted soil[J].Applied Mechanics and Materials,2014,507:841-844.
    [3]宋丽红,李娟,宛中华,等.类芬顿法降解环境内分泌干扰物双酚A的研究进展[J].重庆理工大学学报(自然科学),2014,28(8):64-70.
    [4]CLAYTON E M R,TODD M,AIELLO D A E.The impact of bisphenol A and triclosan on immune parameters in the U.S.population,NHANES 2003-2006[J].Environmental Health Perspectives,2011,119(3):390-396.
    [5]NIE C,SHAO N,WANG B,et al.Fully solar-driven thermo-and electrochemistry for advanced oxidation processes(STEP-AOPs)of2-nitrophenol wastewater[J].Chemosphere,2016,154:604-612.
    [6]PASTRANA-MART?NEZ,LUISA M,PEREIRA N,et al.Degradation of diphenhydramine by photo-Fenton using magnetically recoverable iron oxide nanoparticles as catalyst[J].Chemical Engineering Journal,2015,261:45-52.
    [7]WU K,XIE Y,ZHAO J,et al.Photo-Fenton degradation of a dye under visible light irradiation[J].Journal of Molecular Catalysis AChemical,1999,144(1):77-84.
    [8]裴欢,毛飞,司友斌.纳米铁氧化物催化类Fenton反应降解抗生素磺胺[J].农业环境科学学报,2015,34(7):1356-1362.
    [9]李甜.草酸促进光助Fenton催化氧化深度处理炼化废水工艺研究[D].哈尔滨:哈尔滨工业大学,2015.
    [10]VANDEVIVERE P C,SAVEYN H,VERSTRAETE W,et al.Biodegradation of metal-[S,S]-EDDS complexes[J].Environ Sci Technol,2001,35(9):1765-1770.
    [11]黄闻宇.Fe(III)-EDDS配合物在均相和非均相Fenton及光-Fenton中的应用:BPA降解[D].武汉:武汉大学,2012.
    [12]HALMANN M M.Photodegradation of water pollutants[M].Boca Raton,Florida:CRC Press,1996.
    [13]周丹,王春晖,赵永红.Fe/AC非均相Fenton体系降解BPA[J].环境工程学报,2014,8(12):5284-5288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700