用户名: 密码: 验证码:
银纳米线/聚乙烯醇导电复合材料的逾渗特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on percolation characteristics of AgNWs/PVA conductive composites
  • 作者:卢聘 ; 曲兆明 ; 王庆国 ; 何长安 ; 赵世阳 ; 成伟 ; 王妍
  • 英文作者:LU Pin;QU Zhaoming;WANG Qingguo;HE Changan;ZHAO Shiyang;CHENG Wei;WANG Yan;National Key Laboratory on Electromagnetic Environment Effects,Army Engineering University;Science and Technology on High Power Microwave Laboratory,Northwest Institute of Nuclear Technology;
  • 关键词:银纳米线/聚乙烯醇复合材料 ; 排斥体积理论 ; 几何相变理论 ; 逾渗阈值 ; 电导率
  • 英文关键词:AgNWs/PVA composites;;excluded volume theory;;geometric phase transition theory;;percolation threshold;;conductivity
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:陆军工程大学电磁环境效应国家级重点实验室;西北核技术研究所高功率微波技术重点实验室;
  • 出版日期:2019-03-31
  • 出版单位:功能材料
  • 年:2019
  • 期:v.50;No.426
  • 基金:装备探索研究重大资助项目(71314110)
  • 语种:中文;
  • 页:GNCL201903005
  • 页数:5
  • CN:03
  • ISSN:50-1099/TH
  • 分类号:30-33+38
摘要
采用多元醇法制备了长径比约为240的银纳米线(AgNWs),以聚乙烯醇(PVA)为基体、AgNWs为导电填料制备了导电复合材料;基于排斥体积理论和几何相变理论对银纳米线/聚乙烯醇导电复合材料的逾渗阈值进行了分析和预测。结果表明,基于排斥体积理论计算得到的逾渗阈值(0.5816%)小于实际复合材料的实测数据;基于几何相变理论模型对材料逾渗阈值的拟合数据约为1.25%~1.31%,与实验测试得到的复合材料逾渗转变浓度范围一致性较好。因此,利用几何相变理论进行复合材料逾渗阈值和电导率的预测对于AgNWs/PVA导电复合材料的设计、制备及性能评价具有重要的指导作用。
        Silver nanowires(AgNWs) with aspect ratio of 240 were prepared by polyol method. Conductive composites were prepared with polyvinyl alcohol(PVA) as matrix and silver nanowires as conductive filler. Based on excluded volume theory and geometric phase transition theory, the percolation threshold and conductivity of AgNWs/PVA composites were predicted and analyzed. The results show that the percolation threshold obtained based on the excluded volume theory was 0.5816%, which was smaller than the actual percolation threshold value of AgNWs/PVA composites. The fitting value of percolation threshold was about 1.26%-1.31%, which was consistent with the actual percolation threshold value of AgNWs/PVA composites. The prediction on the conductivity of AgNWs/PVA composites was consistent with the test results. The prediction on the percolation threshold and conductivity of AgNWs/PVA composites are of great significance to the preparation and characterization of composites.
引文
[1] Tao Yu, Xia Yanping, Zhang Guoqing, et al. Influence of slenderness ratio on the percolation threshold of conductive adhesives[J]. Acta Material Compositae Sinica, 2009, 27(6): 213-217(in Chinese).陶宇, 夏艳平, 张国庆, 等. 填料长径比对导电胶渗流阈值的影响[J]. 复合材料学报, 2009, 27(6): 213-217.
    [2] Qi Gongjin, Zhang Changrui, Cao Yingbin, et al. Research progress of percolation model in computational materials science[J]. Journal of Materials Science & Engineering, 2004, 22(1): 123-127(in Chinese).齐共金, 张长瑞, 曹英斌, 等. 逾渗模型在计算材料学中的研究进展[J]. 材料科学与工程学报, 2004, 22(1): 123-127.
    [3] Zallen R. The physics of amorphous solids[M]. New York: Wiley Press,1983.
    [4] Kirkpatrick S. The nature of percolation ‘channels’[J]. Solid State Communications, 1973, 12(12): 1279-1283.
    [5] Sumita M, Sakata K, Asai S, et al. Dispersion of filler and the electrical conductivity of polymer blends filled with carbon black[J]. Polymer Bulletin, 1991, 25(2): 265-271.
    [6] Wessling B. Electrical conductivity in heterogenous polymer systems (Ⅳ) a new dynamic interfacial percolation model[J]. Synthetic Metals, 1988, 27(1): 83-88.
    [7] McLachlan D S. An equation for the conductivity of binary mixtures with anisotropic grain structures[J]. Journal of Physics C: Solid State Physics, 1987, (20): 865-877.
    [8] Xiong Z Y, Zhang B Y, Wang L, et al. Modeling the electrical percolation of mixed carbon fillers in polymer blends[J]. Carbon, 2014, 70: 233-240.
    [9] Liang Jizhao, Yang Quanquan. Predication of percolation threshold of conductive polymer composites[J]. Journal of South China University of Technology (Natural Science Edition), 2007, 35(8): 80-82(in Chinese).梁基照,杨铨铨.导电高分子复合材料逾渗阈值的预测[J].华南理工大学学报( 自然科学版), 2007, 35(8): 80-82.
    [10] Qian Xiaoli, Zhang Huan, Wang Wentao, et al. Controlled synthesis,optical and electric performances of flexible transparent silver nanowire conductive films[J]. Journal of Functional Materials, 2016, 48(2): 02107-02111(in Chinese).钱小立, 张欢, 王文韬, 等. 银纳米线柔性透明导电薄膜的可控制备和光、电性能[J]. 功能材料, 2016, 48(2): 02107-02111.
    [11] Xia Y N, Xiong Y J, Lim B, et al. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics[J]. Angewandte Chemie International Edition, 2009, 48(1): 60-103.
    [12] Lee J Y, Connor S T, Cui Y, et al. Solution-processed metal nanowire mesh transparent electrodes[J]. Nano letters, 2008, 8(2): 689-692.
    [13] Wu Haiping, Wu Xijun, Liu Jinfang, et al. Isotropical conductive adhesives filled with silver nanowires[J]. Acta Material Compositae Sinica, 2006, 23(5): 24-28(in Chinese).吴海平, 吴希俊, 刘金芳,等. 填充银纳米线各向同性导电胶的性能 [J]. 复合材料学报, 2006, 23(5): 24-28.
    [14] Lu Pin, Qu Zhaoming, Wang Qingguo, et al. Conductive switching behavior of epoxy resin/micron-aluminum particles composites[J]. e-Polymers, 2018, 18(1): 85-89.
    [15] Qu Zhaoming, Liu Shanghe, Wang Qingguo, et al. Electromagnetic shielding properties of multilayered composites containing multiple inclusions with various spatial distributions [J]. Materials Letters, 2013, 109: 42-45.
    [16] Balberg I, Anderson C H, Alexander S, et al. Excluded volume and its relation to the onset of percolation[J]. Physical Review B, 1984, 30(7): 3933-3943.
    [17] Balberg I, Binenbaum N, Wagner N. Percolation thresholds in the three-dimensional sticks system[J]. Physical Review Letters, 1984, 52(17): 1465-1468.
    [18] Munson-McGee S H. Estimation of the critical concentration in an anisotropic percolation network[J]. Physical Review B, 1991, 43(4): 3331-3336.
    [19] Qin Siliang, Wang Qingguo, Qu Zhaoming. Prediction for dielectric constant of composites under percolation based on excluded volume[J].Journal of Hebei Normal University (Natural Science Edition) , 2012, 36(5): 478-480(in Chinese).秦思良, 王庆国, 曲兆明. 基于排斥体积的复合材料渗流情况下介电常数预测[J]. 河北师范大学学报(自然科学版), 2012, 36(5): 478-480.
    [20] Nan C W. Physics of inhomogeneous inorganic materials[J]. Progress in Materials Science, 1993, 37(1): 1-116.
    [21] Carmona F, Amarti A E. Anisotropic electrical conductivity in heterogeneous solids with cylindrical conducting inclusions[J]. Physical Review B, 1987, 35(7):3284-3290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700