用户名: 密码: 验证码:
大河影响下的边缘海反风化作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Reverse Weathering in River-dominated Marginal Seas
  • 作者:赵彬 ; 姚鹏 ; 杨作升 ; 于志刚
  • 英文作者:Zhao Bin;Yao Peng;Yang Zuosheng;Yu Zhigang;Key Laboratory of Marine Chemistry Theory and Technology,Ministry of Education,Ocean University of China;College of Chemistry and Chemical Engineering,Ocean University of China;Laboratory of Marine Ecology and Environmental Science,Qingdao National Laboratory for Marine Science and Technology;College of Marine Geosciences,Ocean University of China;
  • 关键词:边缘海 ; 风化作用 ; 自生矿物形成 ; 铝硅酸盐矿物 ; 碳酸盐矿物
  • 英文关键词:Marginal seas;;Reverse weathering;;Formation of authigenic minerals;;Aluminosilicate minerals;;Carbonate minerals
  • 中文刊名:DXJZ
  • 英文刊名:Advances in Earth Science
  • 机构:中国海洋大学海洋化学理论与工程技术教育部重点实验室;中国海洋大学化学化工学院;青岛海洋科学与技术国家实验室海洋生态与环境科学功能实验室;中国海洋大学海洋地球科学学院;
  • 出版日期:2018-01-10
  • 出版单位:地球科学进展
  • 年:2018
  • 期:v.33;No.279
  • 基金:国家自然科学基金面上项目“长江口—东海内陆架沉积有机碳的再矿化作用研究”(编号:41676063);国家自然科学基金重点国际(地区)合作研究项目“长江口及邻近海域沉积有机碳的保存机制研究”(编号:41620104001)资助~~
  • 语种:中文;
  • 页:DXJZ201801005
  • 页数:10
  • CN:01
  • ISSN:62-1091/P
  • 分类号:46-55
摘要
在河口与边缘海区域,大量陆源风化产物的输入和强烈的有机物再矿化作用加速了自生硅酸盐矿物和碳酸盐矿物的生成,这一过程与陆地风化作用相反,被称为反风化作用(Reverse weathering)。反风化作用所导致的自生矿物形成通常在短时间内完成,被认为是平衡大气二氧化碳含量,控制海洋中元素平衡的重要过程。反风化作用的研究方法主要分为直接观察法和化学检测法,前者主要用于自生矿物的结构和元素组成的分析,后者则用于自生铝硅酸盐矿物等定量的研究。反风化作用对海洋环境中碳、硅、常量离子(F~-,Li~+,Na~+,K~+,Ca~(2+)和Mg~(2+)等)和金属元素(Fe,Mn和Al等)等的循环具有重要影响,并促使它们在海洋沉积物中长久埋藏。富含金属氧化物的风化产物的输入,大量易降解有机物和生物硅的沉降,强烈的再矿化作用和次氧/厌氧的成岩条件使得河口与边缘海区域成为反风化作用发生的主要场所。
        In estuarine regions and marginal seas,reverse weathering refers to the formation of authigenic aluminosilicate and carbonate minerals promoted by large inputs of terrestrial weathering products and intense remineralization of Sedimentary Organic Carbon(SOC),which is opposite to land weathering process.Compared with the process in open ocean,the formation of authigenic aluminosilicate and carbonate minerals caused by reverse weathering in estuarine regions and marginal seas is rather rapid,playing an important role in the maintenance of ocean acidity and elements cycles.At present,there are two research methods regarding the reverse weathering process,i.e.,direct observation and chemical detection.The first method is used to study the structure and chemical composition of authigenic minerals and the second is mainly used to do quantified studies of authigenic minerals.The reverse weathering is very important to the cycles of Si,C,major ions(F~-,Li~+,Na~+,K~+,Ca~(2+) and Mg~(2+)),and alkali metal cations(Fe,Mn and Al) in marine environments,which promotes the burial of these elements in marine sediments.Due to large inputs of weathering products rich in Fe,Mn and Al oxides,precipitation of labile OC and biogenic silica,intense remineralization process and suboxic/anoxic conditions,estuarine and marginal seas are suitable sites for reverse weathering studies.The reverse weathering studies in sub-tropical and temperate estuaries should be emphasized in the future.
引文
[1]Berner R A.Early Diagenesis:A Theoretical Approach[M].New Jersey:Princeton University Press,1980.
    [2]Church T M.Marine chemistry in the coastal environment:Principles,perspective and prospectus[J].Aquatic Geochemistry,2016,22(4):1-15.
    [3]Martin J B.Carbonate minerals in the global carbon cycle[J].Chemical Geology,2017,449:58-72.
    [4]Liu Zaihua,Dreybrodt W,Liu Huan.Atmospheric CO2,sink:Silicate weathering or carbonate weathering?[J].Quaternary Sciences,2011,31(3):426-430.[刘再华,Dreybrodt W,刘洹.大气CO2汇:硅酸盐风化还是碳酸盐风化的贡献?[J].第四纪研究,2011,31(3):426-430.]
    [5]Liu Z H,Dreybrodt W,Wang H J.A new direction in effective accounting for the atmospheric CO2budget:Considering the combined action of carbonate dissolution,the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J].Earth Science Reviews,2010,99(3/4):162-172.
    [6]Michalopoulos P,Aller R C.Rapid clay mineral formation of Amazon delta sediments:Reverse weathering and oceanic elemental cycles[J].Science,1995,270(5 236):614-617.
    [7]Michalopoulos P,Aller R C.Early diagenesis of biogenic silica in the Amazon delta:Alteration,authigenic clay formation,and storage[J].Geochimica et Cosmochimica Acta,2004,68(5):1 061-1 085.
    [8]Higgins J A,Schrag D P.Constraining magnesium cycling in marine sediments using magnesium isotopes[J].Geochimica et Cosmochimica Acta,2010,74(17):5 039-5 053.
    [9]Yao Peng,Yu Zhigang,Guo Zhigang.Research progress in transport,burial and remineralization of organic carbon at large river dominated ocean margins[J].Marine Geology and Quaternary Geology,2013,33(1):153-160.[姚鹏,于志刚,郭志刚.大河影响下的边缘海沉积有机碳输运与埋藏及再矿化研究进展[J].海洋地质与第四纪地质,2013,33(1):153-160.]
    [10]Yao Peng,Guo Zhigang,Yu Zhigang.Research process in transport,burial and remineralization of organic carbon at large river dominated ocean margins[J].Acta Oceanologica Sinica,2014,36(2):23-32.[姚鹏,郭志刚,于志刚.大河影响下的陆架边缘海沉积有机碳的再矿化作用[J].海洋学报,2014,36(2):23-32.]
    [11]Yao P,Zhao B,Bianchi T S,et al.Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf:Implications for carbon preservation and authigenic mineral formation[J].Continental Shelf Research,2014,91:1-11.
    [12]Zhao B,Yao P,Bianchi T S,et al.Early diagenesis and authigenic mineral formation in mobile muds of the Changjiang Estuary and adjacent shelf[J].Journal of Marine Systems,2017,172:64-74.
    [13]Milliman J D.Production and accumulation of calcium carbonate in the ocean:Budget of a non-steady state[J].Global Biogeochemical Cycles,1993,7(4):927-957.
    [14]Aller R C,Hannides A,Heilbrun C,et al.Coupling of early diagenetic processes and sedimentary dynamics in tropical shelf environments:The Gulf of Papua deltaic complex[J].Continental Shelf Research,2004,24(19):2 455-2 486.
    [15]Aller R C,Heilbrun C,Panzeca C,et al.Coupling between sedimentary dynamics,early diagenetic processes,and biogeochemical cycling in the Amazon-Guianas mobile mud belt:Coastal French Guiana[J].Marine Geology,2004,208(2/4):331-360.
    [16]Zhu M X,Chen K K,Yang G P,et al.Sulfur and iron diagenesis in temperate unsteady sediments of the East China Sea inner shelf and a comparison with tropical Mobile Mud Belts(MMBs)[J].Journal of Geophysical Research:Biogeosciences,2016,121(11):2 811-2 828.
    [17]Mackenzie F T,Garrels R M.Chemical mass balance between rivers and oceans[J].American Journal of Science,1966,264(7):507-525.
    [18]Mackenzie F T,Kump L R.Reverse weathering,clay mineral formation,and oceanic element cycles[J].Science,1995,270(5 236):586-587.
    [19]Rude P D,Aller R C.Fluorine uptake by amazon continental shelf sediment and its impact on the global fluorine cycle[J].Continental Shelf Research,1994,14(7/8):883-907.
    [20]Rahman S,Aller R C,Cochran J K.Cosmogenic32Si as a tracer of biogenic silica burial and diagenesis:Major deltaic sinks in the silica cycle[J].Geophysical Research Letters,2016,43(13):7 124-7 132.
    [21]Mackin J E,Aller R C.Dissolved Al in sediments and waters of the East China Sea:Implications for authigenic mineral formation[J].Geochimica et Cosmochimica Acta,1984,48(2):281-297.
    [22]Presti M,Michalopoulos P.Estimating the contribution of the authigenic mineral component to the long-term reactive silica accumulation on the western shelf of the Mississippi River Delta[J].Continental Shelf Research,2008,28(6):823-838.
    [23]Aller J Y,Aller R C,Kemp P F,et al.Madrid Fluidized muds:A novel setting for the generation of biosphere diversity through geologic time[J].Geobiology,2010,8:169-178.
    [24]Zhang Qianzhu,Tao Zhen,Gao Quanzhou,et al.A review of the biogeochemical cycles of dissolved silicon in rivers[J].Advances in Earth Science,2015,30(1):50-59.[张乾柱,陶贞,高全洲,等.河流溶解硅的生物地球化学循环研究综述[J].地球科学进展,2015,30(1):50-59.]
    [25]Mackin J E,Aller R C.The effects of clay mineral reactions on dissolved Al distributions in sediments and waters of the Amazon continental shelf[J].Continental Shelf Research,1986,6(1/2):245-262.
    [26]Michalopoulos P,Aller R C,Reeder R J.Conversion of diatoms to clays during early diagenesis in tropical,continental shelf muds[J].Geology,2000,28(12):1 095-1 098.
    [27]Wang C H,Xu L Z,Jin J C.An initial study of relationship between sulfate reduction and carbonate mineralization[C]∥Proceedings of the International Symposium on Sedimentation on the Continental Shelf,With Special Reference,1983:795-806.
    [28]Yang Kehong,Chu Fengyou,Ye Liming,et al.Implication of methane seeps from sedimentary geochemical proxies(Sr/Ca&Mg/Ca)in the Northern South China Sea[J].Journal of Jilin University,2014,44(2):469-479.[杨克红,初凤友,叶黎明,等.南海北部甲烷渗漏的沉积地球化学指标(Sr/Ca和Mg/Ca)识别[J].吉林大学学报,2014,44(2):469-479.]
    [29]Boudreau B P.Diagenetic Models and Their Implementation:Modelling Transport and Reactions in Aquatic Sediments[M].Berlin:Springer,1997.
    [30]Hover V C,Walter L M,Peacor D R.K uptake by modern estuarine sediments during early marine diagenesis,Mississippi Delta Plain,Louisiana,U.S.A.[J].Journal of Sedimentary Research,2002,72(6):775-792.
    [31]Zhou Peng,Li Dongmei,Liu Guangshan,et al.Study on a cosmic-ray-produced silicon-32 as a tracer for ocean processes[J].Journal of Isotopes,2015,28(1):7-19.[周鹏,李冬梅,刘广山,等.应用宇生放射性同位素硅-32示踪海洋过程的研究[J].同位素,2015,28(1):7-19.]
    [32]Rahman S,Aller R C,Cochran J K.The missing silica sink:Revisiting the marine sedimentary Si cycle using cosmogenic32Si[J].Global Biogeochemical Cycles,2017,31:1 559-1 578.
    [33]Tong H,Feng D,Cheng H,et al.Authigenic carbonates from seeps on the northern continental slope of the South China Sea:New insights into fluid sources and geochronology[J].Marine and Petroleum Geology,2013,43(946):260-271.
    [34]Chen Duofu,Chen Xianpei,Chen Guangqian.Geology and geoche mistry of cold seepage and venting-related carbonates[J].Acta Sedimentologica Sinica,2002,20(1):34-40.[陈多福,陈先沛,陈光谦.冷泉流体沉积碳酸盐岩的地质地球化学特征[J].沉积学报,2002,20(1):34-40.]
    [35]Demaster D J,Pope R H.Nutrient dynamics in Amazon shelf waters:Results from AMASSEDS[J].Continental Shelf Research,1996,16(3):263-289.
    [36]Ristvet B L.Reverse Weathering Reactions Within Recent Nearshore Marine Sediments,Kaneohoe Bay,Oahu[D].New Mexico:Kirtland Air Force Base,Test Directorate Field Command,1978:314.
    [37]Wang C,Zhu H,Wang P,et al.Early diagenetic alterations of biogenic and reactive silica in the surface sediment of the Yangtze Estuary[J].Continental Shelf Research,2015,99:1-11.
    [38]Turner R E,Rabalais N N,Alexander R B,et al.Characterization of nutrient,organic carbon,and sediment loads and concentrations from the Mississippi River into the northern Gulf of Mexico[J].Estuaries and Coasts,2007,30(5):773-790.
    [39]Chen Y,Shi M L,Zhao Y G.The Ecological and Environmental Atlas of the Three Gorges of the Changjiang[M].Beijing:Science Press,1989.
    [40]Rude P D,Aller R C.Early diagenetic alteration of lateritic particle coatings in Amazon continental shelf sediment[J].Journal of Sedimentary Petrology,1989,59(5):704-716.
    [41]Li J F,He Q,Xiang W H,et al.Fluid mud transportation at water wedge in the Changjiang Estuary[J].Science in China(Serisei B),2001,44:47-56.
    [42]Bales R C.The Global Water Cycle:Geochemistry and Environment[M].New Jersey:Prentice-Hall,1989.
    [43]Bianchi T S,Allison M A.Large-river delta-front estuaries as natural“recorders”of global environmental change[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(20):8 085-8 092.
    [44]Mc Kee B A,Aller R C,Allison M A,et al.Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers:Benthic boundary layer and seabed processes[J].Continental Shelf Research,2004,24(7):899-926.
    [45]Zhao Bin,Yao Peng,Yu Zhigang.The effect of organic carbon-iron oxide association on the preservation of sedimentary organic carbon in marine environments[J].Advances in Earth Science,2016,31(11):1 151-1 158.[赵彬,姚鹏,于志刚.有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J].地球科学进展,2016,31(11):1 151-1 158.]
    [46]Zhou M J,Shen Z L,Yu R C.Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang(Yangtze)River[J].Continental Shelf Research,2008,28(12):1 483-1 489.
    [47]Liu J P,Li A C,Xu K H,et al.Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J].Continental Shelf Research,2006,26(17/18):2 141-2 156.
    [48]Zhang Guijia,Li Congxian.Formation and distribution of green grains in the Yangtse River[J].Oil and Gas Geology,1989,10(2):145-153.[张桂甲,李丛先.长江口地区自生绿色颗粒的形成和分布[J].石油与天然气地质,1989,10(2):145-153.]
    [49]Deng B,Zhang J,Wu Y.Recent sediment accumulation and carbon burial in the East China Sea[J].Global Biogeochemical Cycles,2006,20(3):466-480.
    [50]Li D J,Zhang J,Huang D J,et al.Oxygen depletion off the Changjiang(Yangtze River)Estuary[J].Science in China(Series D),2002,45(12):1 137-1 146.
    [51]Zhu J R,Zhu Z,Lin J,et al.Distribution of hypoxia and pycnocline off the Changjiang Estuary,China[J].Journal of Marine Systems,2015,154:28-40.
    [52]Wang X,Ma H,Li R,et al.Seasonal fluxes and source variation of organic carbon transported by two major Chinese Rivers:The Yellow River and Changjiang(Yangtze)River[J].Global Biogeochemical Cycles,2012,26(2):2 025.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700