用户名: 密码: 验证码:
E319铸铝合金热机械疲劳行为研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Thermo-mechanical Fatigue Behavior of E319 Cast Aluminum Alloy
  • 作者:钱春华 ; 崔海涛 ; 高超
  • 英文作者:Qian Chunhua;Cui Haitao;Gao Chao;Nanjing University of Aeronautics & Astronautics, College of Energy and Power Engineering;
  • 关键词:E319铸铝合金 ; 热机械疲劳 ; 循环应力 ; 应变特性 ; 响应特性 ; 断口分析
  • 英文关键词:E319 cast aluminum alloy;;thermo-mechanical fatigue;;cyclic stress;;strain characteristics;;stress response;;fracture analysis
  • 中文刊名:JXKX
  • 英文刊名:Mechanical Science and Technology for Aerospace Engineering
  • 机构:南京航空航天大学能源与动力学院;
  • 出版日期:2018-10-16 17:26
  • 出版单位:机械科学与技术
  • 年:2019
  • 期:v.38;No.290
  • 语种:中文;
  • 页:JXKX201904022
  • 页数:5
  • CN:04
  • ISSN:61-1114/TH
  • 分类号:148-152
摘要
对E319铸铝合金进行了等温疲劳及热机械疲劳试验研究,并对E319铸铝合金断口进行扫描电镜(SEM)分析。结果表明:热机械疲劳时E319铸铝合金的平均应力呈压应力。等温疲劳时断口为微孔聚集型断裂,热机械疲劳时断口表现为准解理断裂,热机械疲劳寿命远低于等温疲劳寿命。与镍基高温合金、钛铝合金相比,E319铸铝合金表现出不同的热机械疲劳循环应力应变特性和循环应力响应特性,由于温度和应力松弛的影响,迟滞回线的两端出现"弯勾"形状,并且在断裂前出现强烈的循环硬化行为。
        The isothermal fatigue(IF) and thermo-mechanical fatigue(TMF) behaviors of E319 cast aluminum alloy were studied via experiment and scanning electron microscope(SEM). The results showed that by comparing with Nickel-based superalloy and Ti-Al alloy, E319 cast aluminum alloy exhibits unique TMF cyclic stress-strain characteristics and cyclic stress response. Due to the influence of the temperature and stress relaxation, the hysteresis loop has a curved hook shape, and the specimen has a strong cyclic hardening behavior before the fracture. The mean stress is negative. IF and TMF fracture surface is different, in which the two fracture surfaces have different crack growth mechanism and fracture mode, the TMF life is far lower than the IF life.
引文
[1] Lu S Z, Hellawell A. The mechanism of silicon modification in aluminum-silicon alloys: impurity induced twinning[J]. Metallurgical Transactions A, 1987,18(10):1721-1733
    [2] 熊艳才,刘伯操.铸造铝合金现状及未来发展[J].特种铸造及有色合金,1998(4):1-5Xiong Y C, Liu B C. Review and prospect of cast aluminum alloy[J]. Special Casting & Nonferrous Alloys, 1998(4):1-5 (in Chinese)
    [3] Franclois M, Rémy L. Thermal-mechanical fatigue of Mar-M 509 superalloy. Comparison with low-cycle fatigue behaviour[J]. Fatigue & Fracture of Engineering Materials & Structure, 1991,14(1):115-129
    [4] Shi H J, Korn C, Pluvinage G. High temperature isothermal and thermomechanical fatigue on a molybdenum-based alloy[J]. Materials Science and Engineering: A, 1998,247(1-2):180-186
    [5] Vasseur E, Rémy L. High temperature low cycle fatigue and thermal-mechanical fatigue behaviour of an oxide-dispersion-strengthened nickel-base superalloy[J]. Materials Science and Engineering: A, 1994,184(1):1-15
    [6] Chen H, Chen W, Mukherji D, et al. Cyclic life of superalloy IN738LC under in-phase and out-phase thermomechanica fatigue loading[J]. Zeitschrift für Metallkunde, 1995,86(6):423-427
    [7] Beck T, Pitz G, Lang K H, et al. Thermal-mechanical and isothermal fatigue of IN 792 CC[J]. Materials Science and Engineering: A, 1997,234-236:719-722
    [8] 刘峰,艾素华,王跃臣,等.K417铸造镍基高温合金热机械疲劳行为的研究[J].金属学报,2001,37(3):267-271Liu F, Ai S H, Wang Y C, et al. Thermo-mechanical fatigue behavior of cast nickel-based superalloy K417[J]. Acta Metallurgica Sinica, 2001,37(3):267-271 (in Chinese)
    [9] 王跃臣,李守新,艾素华,等.DD8单晶镍基高温合金的热机械疲劳[J].金属学报,2003,39(9):903-907Wang Y C, Li S X, Ai S H, et al. Thermo-mechanical fatigue behaviours of DD8 single crystal nickel base superalloy[J]. Acta Metallurgica Sinica, 2003,39(9):903-907 (in Chinese)
    [10] Cui W F, Liu C M, Bauer V, et al. Thermomechanical fatigue behaviours of a third generation γ-TiAl based alloy[J]. Intermetallics, 2007,15(5-6):675-678
    [11] Roth M, Biermann H. Thermomechanical fatigue behavior of the intermetallic γ-tial alloy TNB-V5 with different microstructures[J]. Metallurgical and Materials Transactions A, 2010, 41(3):717-726
    [12] Kang D G, Jhung M J, Chang S H. Fluid-structure interaction analysis for pressurizer surge line subjected to thermal stratification[J]. Nuclear Engineering and Design, 2011,241(1):257-269
    [13] Riccardella P C. Application of fatigue monitoring to the evaluation of pressurizer surge lines[R]. EPRI TR-100273. Palo Alto, CA: Electric Power Research Institute, 1992
    [14] Liu F, Wang Y C, Zhang H, et al. Evolutionary stress cycle behaviour and damage mechanisms in nickel based superalloy under thermomechanical fatigue[J]. Materials Science and Technology, 2003,19(7):853-858
    [15] Pahlavanyali S, Rayment A, Roebuck B, et al. Thermo-mechanical fatigue testing of superalloys using miniature specimens[J]. International Journal of Fatigue, 2008,30(2):397-403

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700