用户名: 密码: 验证码:
涂覆反射隔热涂料对高铁桥梁高墩日照温度效应的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Reflective Coatings on Temperature Effect of RC Round-ended Pier of High-speed Rail Bridge under Thermal Radiation
  • 作者:元强 ; 刘文涛 ; 饶惠明 ; 谢宏 ; 赵虎
  • 英文作者:YUAN Qiang;LIU Wentao;RAO Huiming;XIE Hong;ZHAO Hu;National Engineering Laboratory for High Speed Railway Construction, Central South University;Jingfu Min'gan Railway Passenger Dedicated Line Co., Ltd.;Department of Construction Management;China Railway Siyuan Survey and Design Group Co., Ltd.;
  • 关键词:高墩 ; 太阳辐射 ; 温度效应 ; 反射隔热涂料 ; 有限元模型
  • 英文关键词:pier;;solar radiation;;temperature effect;;reflective coating;;finite element model
  • 中文刊名:TDXB
  • 英文刊名:Journal of the China Railway Society
  • 机构:中南大学高速铁路建造技术国家工程实验室;京福闽赣铁路客运专线有限公司;南昌铁路局建设管理处;中铁第四勘察设计院集团有限公司;
  • 出版日期:2019-07-15
  • 出版单位:铁道学报
  • 年:2019
  • 期:v.41;No.261
  • 基金:中国铁路总公司科技研究开发计划(2014G001-D,2013G008-E)
  • 语种:中文;
  • 页:TDXB201907014
  • 页数:7
  • CN:07
  • ISSN:11-2104/U
  • 分类号:101-107
摘要
以高速铁路78 m高空心圆端形桥墩为研究对象,利用ANSYS软件建立三维温度场和温度变形的分析模型,通过减小模型中桥墩表面短波辐射吸收率模拟桥墩表面涂覆反射隔热涂料的效果。计算结果表明:考虑反射隔热涂料的效果,日照辐射作用下的桥墩各处温度幅值明显降低,最大可达8.69℃。不考虑上部结构的约束,桥墩墩顶轴线处伸长最大可达到7.09 mm,而顺桥向、横桥向偏转最大可达到3.29、1.19 mm;涂刷涂料后桥墩顺、横桥向偏转位移值减小达60%以上,轴向伸长日变化值减小70%以上。考虑固定支座约束后,墩顶水平面内位移被约束在极小值,但桥墩轴向伸长不受影响,且涂刷涂层的控制效果与不考虑墩顶约束是一致的。说明在桥墩表面涂覆一层反射隔热涂料对于控制日照辐射下桥墩的温度效应的效果是显著的。
        The ANSYS software was used to develop a finite element model of a 78-meter-high round-ended pier of high-speed railway bridge to calculate the three-dimensional solar temperature field and deformation. The effect of the reflective thermal insulation coating was simulated by reducing the short-wave solar radiation absorption coefficient of the pier surface in the model. The results show that the temperature amplitude of the pier under solar radiation is significantly reduced by a maximum value of 8.69 ℃ when considering the effect of the coating. Regardless of the restraint of the superstructure, the height of the pier increases by 7.09 mm, while the maximum deformation of transverse and longitudinal direction reaches 3.29 mm and 1.19 mm. When considering the restraint of the fixed bearing, the horizontal internal displacement of pier top is constrained to a minimum value, but the axial extension of the pier remains unaffected. The control effect of the coating is consistent with that without considering the constraint of pier top. The deformation of transverse and longitudinal direction of the pier can be reduced by 60%, and the daily variation of axial extension can be reduced by 70%, when considering the effect of the reflective coating. This indicates that the temperature effect of the piers under solar radiation can be significantly improved by applying a reflective coating.
引文
[1] 翟婉明,赵春发,夏禾,等.高速铁路基础结构动态性能演变及服役安全的基础科学问题[J].中国科学:技术科学,2014,44(7):645-660.ZHAI Wanming,ZHAO Chunfa,XIA He,et al.Basic Scientific Issues on Dynamic Performance Evolution of the High-speed Railway Infrastructure and Its Service Safety[J].Scientia Sinica Technologic,2014,44(7):645-660.
    [2] 贾宏宇.非平稳地震激励下山区高墩桥梁随机响应计算理论及应用研究[D].成都:西南交通大学,2013.
    [3] 袁长卿,高月婷.轨道不平顺性对高速铁路的影响[J].铁道建筑技术,2007(S2):109-112.YUAN Changqing,GAO Yueting.Influence of Track Irregularities on High-speed Railway[J].Railway Construction Technology,2007(S2):109-112.
    [4] 夏正斌,涂伟萍,杨卓如,等.建筑隔热涂料的研究进展[J].精细化工,2001,18(10):599-602.XIA Zhengbin,TU Weiping,YANG Zhuoru,et al.Advances in Devlopment of Thermal Insulation Coating[J].Fine Chemicals,2001,18(10):599-602.
    [5] 刘文涛,元强,谢宏,等.功能填料对反射隔热涂料隔热性能影响的研究[J].涂料工业,2016,46(12):22-28.LIU Wentao,YUAN Qiang,XIE Hong,et al.Effects of Functional Fillers on Thermal Isolation Property of Reflective Thermal Isolation Coatings[J].Paint and Coatings Industry,2016,46(12):22-28.
    [6] 任志刚,胡曙光,丁庆军.太阳辐射模型对钢管混凝土墩柱温度场的影响研究[J].工程力学,2010,27(4):246-256.REN Zhigang,HU Shuguang,DING Qingjun.Research on the Effect of Solar Radiation Model on Temperature Field of Concrete-filled Steel Tube Pier[J].Engineering Mechanics,2010,27(4):246-256.
    [7] American Society of Heating,Refrigeration and Airconditioning Engineers.Handbook of Fundamentals[M].New York:ASHRAE,1978.
    [8] DUFFIE J A,BECKMAN W A.Solar Energy of Thermalprocess[M].New York:John Wiley & Sons,Inc.,1991.
    [9] GUEYMARD C A.Direct Solar Transmittance and Irradiancepredictions with Broadband Models,Part I:Detailedtheoretical Performance Assessment[J].Solar Energy,2003,74(5):355-379.
    [10] GUEYMARD C A.Direct Solar Transmittance and Irradiancepredictions with Broadband Models,Part II:Validationwith High-quality measurements[J].Solar Energy,2003,74(5):381-395.
    [11] 王炳忠,潘根娣.我国的大气透明度及其计算[J].太阳能学报,1981,2(1):13-22.WANG Bingzhong,PAN Gendi.The Atmospheric Transparency in China and Its Computation[J].Acta Energiae Solaris Sinica,1981,2(1):13-22.
    [12] 李锦萍,宋爱国.北京晴天太阳辐射模型与ASHRAE模型的比较[J].首都师范大学学报(自然科学版),1998,19(1):35-38.LI Jinping,SONG Aiguo.Compare of Clear-day Solar Radiation Model of Beijing and ASHRAE[J].Journal of Capital Normal University ( Natural Science Edition),1998,19(1):35-38.
    [13] 凯尔别克·F.太阳辐射对桥梁结构的影响[M].刘兴法,译.北京:中国铁道出版社,1981.
    [14] 余卫东,汤新海.气温日变化过程的模拟与订正[J].中国农业气象,2009,30(1):35-40.YU Weidong,TANG Xinhai.Simulation and Modification of Daily Variation of Air Temperature[J].Chinese Journal of Agrometeorology,2009,30(1):35-40.
    [15] 王浩.混凝土空心桥墩的日照温度场及其效应研究[D].重庆:重庆大学,2012:32-36.
    [16] 陈勇.铁路空心高墩温度场及温度效应研究[D].重庆:重庆大学,2012:33-38.
    [17] CAMPBELL-ALLEN D,THORNE C P.The Thermal Conductivity of Concrete[J].Magazine of Concrete Research,1963,15(43):39-48.
    [18] HARMATHY T Z.Thermal Properties of Concrete at Elevated Temperatures[J].Journal of Materials,1970,5(1):47-74.
    [19] MARSHALL A L.The Thermal Properties of Concrete[J].Building Science,1972(7):157-174.
    [20] FRYBA L.Quasi-static Distribution of Braking and Starting Forces in Railsand Bridge[J].Rail International,1974,22(11):698-716.
    [21] 卜一之.高速铁路桥梁纵向力传递机理研究[D].成都:西南交通大学,1998.
    [22] 叶宏,徐斌,王军,等.陶瓷微球填充型隔热涂料的有效导热系数[J].中国科学技术大学学报,2006,36(4):360-363.YE Hong,XU Bin,WANG Jun,et al.The Effective Thermal Conductivity of the Thermal Insulation Coatings Incorporated with Ceramic Micro-spheres[J].Journal of University of Science and Technology of China,2006,36(4):360-363.
    [23] 王瑾璐,蔡会武,江照洋,等.薄层隔热涂料的制备及其性能研究[J].涂料工业,2009,39(4):5-7.WANG Jinlu,CAI Huiwu,JIANG Zhaoyang,et al.Preparation of Thin Thermal Insulation Coatings and Its Performance[J].Paint and Coatings Industry,2009,39(4):5-7.
    [24] 马保国,戴璐,张风臣.一种新型隔热涂料的制备及性能研究[J].材料导报:研究篇,2010,10:52-55.MA Baoguo,DAI Lu,ZHANG Fengchen.Investigation on Preparation and Properties of a Novel Thermal Insulation Coating Containing Hollow Glass Beads[J].Materials Review,2010,10:52-55.
    [25] BREWSTER M Q.Thermal Radiative Transfer and Properties[M].New York:John Wiley & Sons,Inc.,1992.
    [26] 中华人民共和国国家发展和改革委员会.JC/T 1040—2007建筑外表面用热反射隔热涂料[S].北京:中国标准出版社,2007.
    [27] FU H C,NG S F,CHEUNG M S,et al.Thermal Behavior of Composite Bridge[J].Journal of Structural Engineering,ASCE,1990,166(12):3302-3323.
    [28] SAETTA A,SCOTTA R,VITALIANI R.Stress Analysis of Concrete Structures Subjected to Variable Thermal Loads[J].Journal of Structural Engineering,1995,121(3):446-457.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700