用户名: 密码: 验证码:
气流粉碎过程的选择性特征及其数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Selectivity characteristics and numerical simulation of airflow pulverization process
  • 作者:李振 ; 王进 ; 付艳红 ; 周安宁 ; 杨超 ; 赵伟
  • 英文作者:LI Zhen;WANG Jin;FU Yanhong;ZHOU Anning;YANG Chao;ZHAO Wei;School of Chemistry and Chemical Engineering,Xi'an University of Science and Technology;Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education,China University of Mining & Technology;Key Laboratory of Coal Resources Exploration and Comprehensive Utilization,Ministry of Land and Resources;
  • 关键词:气流粉碎 ; 过程 ; 选择性 ; 数值模拟
  • 英文关键词:airflow pulverization;;process;;selectivity;;numerical simulation
  • 中文刊名:ZGKD
  • 英文刊名:Journal of China University of Mining & Technology
  • 机构:西安科技大学化学与化工学院;中国矿业大学煤炭加工与高效洁净利用教育部重点实验室;国土资源部煤炭资源勘查与综合利用重点实验室;
  • 出版日期:2016-03-15
  • 出版单位:中国矿业大学学报
  • 年:2016
  • 期:v.45;No.209
  • 基金:国家自然科学基金项目(51404194);; 国家重点基础研究发展计划(973)项目(2012CB214905);; 煤炭加工与高效洁净利用教育部重点实验室开放基金项目(CPEUKF1403)
  • 语种:中文;
  • 页:ZGKD201602020
  • 页数:6
  • CN:02
  • ISSN:32-1152/TD
  • 分类号:181-186
摘要
为了研究气流粉碎作用的过程机制,采用太西无烟煤、神府煤和神府半焦探究了流化床气流粉碎系统中煤粒的粉碎效果,得到不同煤粒在粉碎系统中的最佳选择性粉碎条件.结果表明:太西无烟煤、神府煤和神府半焦在粉碎气压分别为0.4,0.5和0.3 MPa时,"灰分迁移"效果明显,对应主要分级产品灰分差异依次可达0.4%,13.3%,7.0%.解析流化床气流粉碎过程机理为:颗粒粉碎表现为冲击破碎、剪切破碎以及摩擦粉碎.采用Fluent 14.0对流化床气流粉碎系统粉碎腔进行过程场的数值模拟.解析其选择性特征为:粉碎气压较高时有利于高灰分(高矿物质)煤炭的选择性解离,粉碎气压较低时有利于选择性解离黏土矿物含量较高的煤粒.
        To investigate the process mechanism of airflow pulverization,the pulverization effects of Taixi anthracite,Shenfu coal and semi-coke in the fluidized bed airflow crushing system were studied.Then,the best selective pulverization conditions of different coal particles were obtained accordingly.The results show that when crushing pressures on Taixi anthracite,Shenfu coal and semi-coke are 0.4,0.5and 0.3 MPa respectively,the ash content differences of main classification products can reach 0.4%,13.3% and 7.0% correspondingly,which means the effect of ash migration is significant.The fluidized bed airflow pulverization process mechanism is that the particles crushing behaves as impact crushing,shearing crushing and friction crushing.The pulverization process field in crushing cavity of fluidized bed airflow crushing system was numerically simulated with Fluent 14.0,the selectivity characteristics were also revealed.High crushing pressure is good for the selective dissociation of coal with high ash(high-content minerals),while low pressure is benefit for the selective dissociation ofcoal with high-content clay minerals.
引文
[1]NOBLE A,LUTTRELL G H.A review of state-ofthe-art processing operations in coal preparation[J].International Journal of Mining Science and Technology,2015,25(4):511-521.
    [2]张洪,胡光洲,范佳鑫,等.矿物在粉煤中分布规律研究[J].工程热物理学报,2008,29(7):1231-1233.ZHANG Hong,HU Guangzhou,FAN Jiaxin,et al.Study on the distribution of minerals in pulverized coals[J].Journal of Engineering Thermophysics,2008,29(7):1231-1233.
    [3]李国康,杨云川,朱英杰.气流粉碎法制备超细粉体的效应分析[J].中国粉体技术,2003,9(1):13-17.LI Guokang,YANG Yunchuan,ZHU Yingjie.Analysis on effects of gas flow crushing process of superfine powders[J].China Powder Science and Technology,2003,9(1):13-17.
    [4]KOLACZ J.Investigating flow conditions in dynamic classification[J].Minerals Engineering,2002,15(3):131-138.
    [5]GALK J,PEUKERT W,KRAHNEN J.Industrial classification in a new impeller wheel classifier[J].Powder Technology,1999,105(1/3):186-189.
    [6]贺靖峰,何亚群,段晨龙,等.脉动气流回收蛭石的实验研究与数值模拟[J].中国矿业大学学报,2010,39(4):557-562.HE Jingfeng,HE Yaqun,DUAN Chenlong,et al.Experimental research and numerical simulation on the vermiculite recovery by an active pulsing airflow[J].Journal of China University of Mining&Technology,2010,39(4):557-562.
    [7]刘雪东,李凤生,张智宏,等.粉体撞击流超细粉碎与表面改性研究[J].化学工程,2002,30(4):41-43.LIU Xuedong,LI Fengsheng,ZHANG Zhihong,et al.Ultrafine grinding and surface modification of powders by impinging stream method[J].Chemical Engineering,2002,30(4):41-43.
    [8]杨华明,邱冠周.超细粉碎过程助磨剂的作用机理[J].中南工业大学学报,2000,31(5):401-403.YANG Huaming,QIU Guanzhou.Affecting mechanism of grinding aid during ultrafine grinding[J].Journal of Central South University of Technology,2000,31(5):401-403.
    [9]牟赛杰,周香林,巫湘坤,等.非晶合金颗粒高速撞击过程及破碎行为的模拟[J].材料热处理学,2011,32(2):147-150.MOU Saijie,ZHOU Xianglin,WU Xiangkun,et al.Simulation on impacting and smashing behavior of amorphous alloy particles with high flying velocity[J].Transactions of Materials and Heat Treatment,2011,32(2):147-150.
    [10]陈海焱.流化床气流粉碎分级技术的研究与应用[D].成都:四川大学化学工程学院,2007:42-57.
    [11]SHAPIRO M,GALPERIN V.Air classification of solid particles:a review[J].Chemical Engineering and Processing:Process Intensification,2005,44(2):279-285.
    [12]赵斌,王庆功,么强,等.流化床煤颗粒分级试验研究[J].中国矿业大学学报,2014,43(4):678-683.ZHAO Bin,WANG Qinggong,YAO Qiang,et al.The experimental research on coal particles grading in a gas-solid fluidized bed[J].Journal of China University of Mining&Technology,2014,43(4):678-683.
    [13]杨超,李振,周安宁,等.细粒煤干法分选技术浅析[J].矿山机械,2015,43(9):10-14.YANG Chao,LI Zhen,ZHOU Anning,et al.Analysis on dry process separation technology of fine coal[J].Mining&Processing Equipment,2015,43(9):10-14.
    [14]刘瑜,杜长龙,付林,等.煤块冲击破碎速度研究[J].振动与冲击,2011,30(3):19-21.LIU Yu,DU Changlong,FU Lin,et al.Impact crushing velocity of lump coal[J].Journal of Vibration and Shock,2011,30(3):19-21.
    [15]李翔,李双跃,綦海军,等.基于Fluent软件CXM超细分级磨粉碎室内的粉碎机理[J].中国粉体技术,2012,18(6):25-27.LI Xiang,LI Shuangyue,QI Haijun,et al.Comminution mechanism for grinding chamber of CXM ultrafine classifier mill based on Fluent software[J].China Powder Science and Technology,2012,18(6):25-27.
    [16]崔岩.气流粉碎过程破碎理论研究及计算机仿真系统开发[D].上海:华东理工大学机械与动力工程学院,2011:103-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700