用户名: 密码: 验证码:
基于小波包方法的超声速气膜气动光学效应相干结构
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation on coherent structure of supersonic film aero-optics based on wavelet packet
  • 作者:丁浩林 ; 易仕和 ; 赵鑫海 ; 朱杨柱 ; 高穹
  • 英文作者:DING Hao-lin;YI Shi-he;ZHAO Xin-hai;ZHU Yang-zhu;GAO Qiong;College of Aerospace Science,National University of Defence Technology;The 63926 Troop of People′s Liberation Army of China;State Key Laboratory of Disaster Prevention and Mitigation of Explosion and Impact,The Army Engineering University of People′s Liberation Army of China;Key Laboratory of Electro-Optical Countermeasures Test & Evaluation Technology,Luoyang Electronic Equipment Test Center of China;
  • 关键词:气动光学 ; 超声速气膜 ; 相干结构 ; 小波包
  • 英文关键词:aero-optics;;supersonic film;;coherent structure;;wavelet packet
  • 中文刊名:GXJM
  • 英文刊名:Optics and Precision Engineering
  • 机构:国防科技大学空天科学学院;中国人民解放军63926部队;中国人民解放军陆军工程大学爆炸冲击防灾减灾国家重点实验室;中国洛阳电子装备试验中心光电对抗测试与评估技术重点实验室;
  • 出版日期:2018-06-15
  • 出版单位:光学精密工程
  • 年:2018
  • 期:v.26
  • 基金:国家重大仪器研制项目(No.11527802);; 国防科技大学预研项目(No.EDYYJCY20140101)
  • 语种:中文;
  • 页:GXJM201806002
  • 页数:7
  • CN:06
  • ISSN:22-1198/TH
  • 分类号:18-24
摘要
当高速成像制导导弹在大气中飞行时,其光学窗口承受着严重的气动加热。超声速气膜冷却方法可以有效地隔离外部加热,但是超声速气膜流动会引起光束退化,降低图像质量。为了研究超声速气膜气动光学效应,本文构建了主流马赫数为3.4,设计喷流马赫数为2.5,实际测得喷流马赫数为2.45的超声速气膜实验装置。利用基于纳米粒子的平面激光散射技术获得了高时空分辨率流场图像,并对气膜冷却流动的密度场进行重构,利用光线追迹法获取了对应密度场的光程差。通过将光程差分布和K-H涡对比后发现,光程差的波谷位置对应于涡卷的中心,而光程差的波峰对应于涡卷中心之间的连接部分。但是,随着涡结构的发展破碎,对应关系不再成立。根据超声速气膜NPLS流场图像结果,利用分形原理获取的分形维数结果,将其沿流向划分为三个区域,其对应平坦度分别为3.4,2.9,3.6,验证了区域2更适合进行相干结构提取。
        While a high-speed aircraft is flying in the atmosphere,its optical hood is subjected to severe aerodynamic heating.Supersonic film cooling method can effectively isolate external heating,but the flow structures formed by the supersonic film cooling can cause beam degradation and affect the imaging quality.To investigate the aero-optics of supersonic film cooling,an experimental model was adopted in this paper,with its mainstream Mach number 3.4,designed jet Mach number 2.5,and measured jet Mach number 2.45.High-resolution images of flow were acquired by the nano-based planar laser scattering(NPLS)technique,by reconstructing the density field of supersonic film cooling,and then,the optical path difference(OPD)was acquired by the ray-tracing method.Depending on the comparison between the K-H vortex and OPD distribution,the valleys of OPD correspond to the vortex‘rollers' and the peaks to the ‘braids'.However,the corresponding relationship becomes quite irregular for the flow field with developed vortices,and cannot be summarized in this manner.According to the NPLS result of the supersonic film flow field,based on the fractal dimension results obtained by the fractal principle,the flow field is divided into three regions along the direction of flow,and the coherent structures of the corresponding OPD are calculated respectively.The corresponding flatness is 3.4,2.9,and 3.6,which verifies that Zone 2 is more suitable for coherent structure extraction.
引文
[1]FU J,YI SH,WANG XH,et al..Experimental study on supersonic film cooling on the surface of a blunt body in hypersonic flow[J].Chinese Physics B,2014,23(10):315-322.
    [2]朱杨柱,易仕和,陈值,等.带喷流超声速光学头罩流场气动光学畸变试验研究[J].物理学报,2013,62(8):084219-1-8.ZHU Y ZH,YI SH H,CHEN ZH,et al..Experimental investigation on aero-optical aberration of the supersonic flow passing through an optical dome with gas injection[J].Acta Phys.Sin.,2013,62(8):084219-1-8.(in Chinese)
    [3]丁浩林,易仕和,付佳,等.雷诺数对超声速气膜气动光学效应影响的实验研究[J].红外与激光工程,2017,46(2):0211002-1-8.DING H L,YI SH H,FU J,et al..Experimental investigation of influence of Reynolds number on supersonic film aero-optics[J].Infrared and Laser Engineering,2017,46(2):0211002-1-8.(in Chinese)
    [4]易司琪,丁浩林,龙志强.超声速气膜冷却时的光学性能优化设计[J].应用光学,2017,38(4):20-25.YI S Q,DING H L,LONG ZH Q.Optimal design of supersonic gaseous film cooling optical performance[J].Journal of Applied Optics,2017,38(4):20-25.(in Chinese)
    [5]丁浩林,易仕和,付佳,等.超声速湍流边界层气动光学效应的实验研究[J].红外与激光工程,2016,45(10):1018007-1-7.DING H L,YI SH H,FU J,et al..Experimental investigation of aero-optical effect due to supersonic turbulent boundary layer[J].Infrared and Laser Engineering,2016,45(10):1018007-1-7.(in Chinese)
    [6]FARGE M.Wavelet transforms and their applications to turbulence[J].Annual Review of Fluid Mechanics,1992,24:395-457.
    [7]FARGE M,KAI S,KEVLAHAN N.Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis[J].Physics of Fluids,1999,11(8):2187-2201.
    [8]FARGE M,PELLEGRINO G,SCHNEIDER K.Coherent vortex extraction in 3Dturbulent flows using orthogonal wavelets[J].Phys.Rec.Lett.,2001,87(5):054501.
    [9]FARGE M,KAI S,PELLEGRINO G,et al..Coherent vortex extraction in three-dimensional homogeneous turbulence:Comparison between CVSwavelet and POD-Fourier decompositions[J].Physics of Fluids,2003,15(10):2886-2896.
    [10]DAUBECHIES I.Ten Lectures on Wavelets[M].Philadelphia:Society for industrial and applied mathematics,1992:1-2.
    [11]DING H L,YI S H,ZHU Y Z,et al..Experimental investigation on aero-optics of supersonic turbulent boundary layers[J].Applied Optics,2017,56(27):7604-7610.
    [12]YI S H,TIAN L F,ZHAO Y X,et al..Aerooptical aberration measuring method based on NPLS and its application[J].Chin.Sci.Bull.,2010,55(31):3545-3549.
    [13]TIAN L F,YI S H,ZHAO Y X,et al..Study of density field measurement based on NPLS technique in supersonic flow[J].Sci.Chin.Phys.Mech.Astron,2009,52:1357-1363.
    [14]GAO Q,YI S H,JIANG Z F,et al..Hierarchial structure of the optical path length of the supersonic turbulent boundary layer[J].Optics Express,2012,20(20):16494-16503.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700