用户名: 密码: 验证码:
液氢贮箱停放过程中的力热分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermodynamic Analysis in Liquid Hydrogen Tank while Parking
  • 作者:罗天培 ; 张伟 ; 李茂 ; 张家仙
  • 英文作者:LUO Tian-pei;ZHANG Wei;LI Mao;ZHANG Jia-xian;Beijing Institute of Aerospace Testing Technology;Beijing Engineering Research Center of Aerospace Testing Technology and Equipment;
  • 关键词:贮箱 ; Lee模型 ; 安托因方程 ; VOF模型 ; 蒸发
  • 英文关键词:Tank;;Lee model;;Antoine equation;;VOF model;;Evaporation
  • 中文刊名:YHXB
  • 英文刊名:Journal of Astronautics
  • 机构:北京航天试验技术研究所;北京市航天试验技术与装备工程技术研究中心;
  • 出版日期:2019-05-30
  • 出版单位:宇航学报
  • 年:2019
  • 期:v.40
  • 语种:中文;
  • 页:YHXB201905010
  • 页数:8
  • CN:05
  • ISSN:11-2053/V
  • 分类号:78-85
摘要
为了寻找到运载火箭长时间停放过程中液氢贮箱的最经济液位,用于制定合理的发射流程以及紧急处置方法,采用计算流体力学(CFD)技术,对某型运载火箭停放期间液氢贮箱的力、热情况进行了仿真计算和分析。计算选用了VOF(Volume-of-fluid)两相流模型以及Lee相变模型,为了提高Lee模型在不同压力情况下对相变过程的模拟精度,采用安托因方程修正了该模型。修正后的模型首先由试验数据校验了其精确性,随后开展的液氢贮箱停放过程仿真结果表明:贮箱的竖直方向与径向均存在温度分层的现象,液相内会形成大的漩涡,该漩涡会使得冷热流体不断进行热交换,并导致贮箱内部的液氢出现气化。贮箱停放期间蒸发率最大值超过2 m~3/h,发生在停放4 h左右;而贮箱液位充填至37 m~3以上或17 m~3以下时蒸发率较低,最小值接近1 m~3/h。
        In order to find the most economical liquid level of the hydrogen tank during a launch vehicle's long-term parking, then to formulate a reasonable launch process and emergency disposal method, the computational fluid dynamics(CFD) technology is used to simulate and analyze the thermodynamics in the hydrogen tank of the launch vehicle while parking. The Volume-of-fluid(VOF) two-phase flow model and Lee phase transfer model are selected. In order to improve the Lee model's simulation accuracy under different pressure conditions, the Antoine equation is employed to modify it. The modified model is firstly validated by the test data, and the subsequent simulation of the liquid hydrogen tank parking indicates that there is the temperature stratification phenomenon in both the vertical and radial directions in the tank, a large vortex is formed in the liquid phase, and it will cause the continuous thermal change between the cold fluid and hot fluid and lead to the liquid hydrogen's evaporation in the inner part of the tank. The maximum evaporation rate exceeds 2 m~3/h and occurs at about 4 h after parking, the evaporation rate is relatively low when the tank is filled to more than 37 m~3 or less than 17 m~3, and the minimum value is close to 1 m~3/h.
引文
[1] 陈亮,梁国柱,邓新宇,等.贮箱内低温推进剂气化过程的CFD数值仿真[J].北京航空航天大学学报,2013,39(2):264-268.[Chen Liang,Liang Guo-zhu,Deng Xin-yu,et al.CFD numerical simulation of cryogenic propellant vaporization in tank[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(2):264-268.]
    [2] 王赞社,顾兆林,冯诗愚,等.低温推进剂贮箱增压过程的传热传质数学模拟[J].低温工程,2007,160(6):28-37.[Wang Zan-she,Gu Zhao-lin,Feng Shi-yu,et al.Simulation of heat transfer and mass transfer in cryogenic propellant tank pressurization process[J].Cryogenics,2007,160(6):28-37.]
    [3] Zilliac R,Arif Karabeyoglu M.Modeling of propellant tank pressurization[R].41th AIAA/ASME/ASEE Joint Propulsion Conference,Tucson,Az,July 2005.
    [4] Wang L,Li Y Z,Zhu K,et al.Comparison of three computational models for predicting pressurization characteristics of cryogenic tank during discharge[J].Cryogenics,2015,65:16-25.
    [5] Hardy T L,Tomsik T M.Prediction of the ullage gas thermal stratification in a NASP vehicle propellant tank experimental simulation using Flow-3D[R].NASA TM-103217,1990.
    [6] Wang L,Li Y Z,Zhang F N,et al.Performance analysis of no-vent fill process for liquid hydrogen tank in terrestrial and on-orbit environments[J].Cryogenics,2015,72:161-171.
    [7] Fu J,Bengt S,Chen X Q,et al.Influence of phase change on self-pressurization in cryogenic tanks under microgravity[J].Applied Thermal Engineering,2015,87:225-233.
    [8] Lee W H.A pressure iteration scheme for two-phase modeling[R].Technical Report LA-UR 79-975.Los Alamos Scientific Laboratory,Los Alamos,New Mexico,1979.
    [9] Liu Z,Li Y Z,Jin Y H.Pressurization performance and temperature stratification in cryogenic final stage propellant tank[J].Applied Thermal Engineering,2016,106:211-220.
    [10] Liu Z,Li Y Z,Xie F S,et al.Thermal performance of foam/MLI for cryogenic liquid hydrogen tank during the ascent and on orbit period[J].Applied Thermal Engineering,2016,98:430-439.
    [11] Kassemi M,Kartuzova O.Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank[J].Cryogenics,2016,72:138-153.
    [12] Wang L,Ma Y,Wang Y,et al.Investigation on pressurization behaviors of two-side-insulated cryogenic tank during discharge[J].International Journal of Heat and Mass Transfer,2016,102:703-712.
    [13] 杨旦旦,岳宝增.低重环境下旋转轴对称贮箱内液体晃动研究[J].宇航学报,2013,34(7):917-925.[Yang Dan-dan,Yue Bao-zeng.Research on sloshing in axisymmetrical containers under low gravity[J].Journal of Astronautics,2013,34(7):917-925.]
    [14] 李青,韩增尧,马兴瑞.航天器贮箱液固耦合振动特性的仿真与试验研究[J].宇航学报,2014,35(11):1233-1237.[Li Qing,Han Zeng-yao,Ma Xing-rui.Simulation and experimental research on fluid-structure-interaction dynamics of tank in spacecrafts[J].Journal of Astronautics,2014,35(11):1233-1237.]
    [15] 徐济鋆.沸腾传热和气液两相流[M].北京:原子能出版社,2001:215-220.
    [16] 尚存存,耑锐,王文.液氧贮箱增压过程中气枕空间温度场的数值模拟[J].低温工程,2011,184(6):47-52.[Shang Cun-cun,Zhuan Rui,Feng Wang-wen.Numerical simulation of ullage temperature field in pressurization process of liquid oxygen tank[J].Cryogenics,2011,184(6):47-52.]
    [17] 王磊,厉彦忠,李翠,等.液体火箭贮箱增压排液过程温度场数值研究[J].航空动力学报,2011,26(8):1893-1899.[Wang Lei,Li Yan-zhong,Li Cui,et al.Numerical study on temperature distribution of tank pressurization process of liquid rocket during outflow[J].Journal of Aerospace Power,2011,26(8):1893-1899.]
    [18] Roudebusb W H.An analysis of the problem of tank pressu-rization during outflow[R].NASA TND-2585,1965.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700