用户名: 密码: 验证码:
木霉菌对黄瓜幼苗生长和膜脂过氧化指标的影响及对枯萎病的防治效果
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Trichoderma on the Growth of Cucumber Seedlings, Membrane Lipid Indexes and Control Effect against Fusarium Wilt
  • 作者:高长敏 ; 马光恕 ; 廉华 ; 刘明鑫 ; 张春秋 ; 曲虹云
  • 英文作者:GAO Changmin;MA Guangshu;LIAN Hua;LIU mingxin;ZHANG Chunqiu;QU Hongyun;College of Agriculture, Heilongjiang Bayi Agricultural University;Heilongjiang Academy of Agricultural Sciences Horticulture Branch;
  • 关键词:木霉菌 ; 黄瓜枯萎病 ; 幼苗生长 ; 膜脂过氧化
  • 英文关键词:Trichoderma;;cucumber Fusarium wilt;;seedlings growth;;membrane lipid peroxidation
  • 中文刊名:ZSWF
  • 英文刊名:Chinese Journal of Biological Control
  • 机构:黑龙江八一农垦大学农学院;黑龙江省农业科学院园艺分院;
  • 出版日期:2018-10-08
  • 出版单位:中国生物防治学报
  • 年:2018
  • 期:v.34
  • 基金:黑龙江省自然科学基金(QC2016035);; 黑龙江省农垦总局科技项目(HNK125B-02-12);; 黑龙江省学位与研究生教育教学改革研究研究项目(JGXM_HLJ_2015117)
  • 语种:中文;
  • 页:ZSWF201805017
  • 页数:9
  • CN:05
  • ISSN:11-5973/S
  • 分类号:117-125
摘要
本文开展了3种生防木霉菌,包括棘孢木霉Trichoderma asperellum 525、哈茨木霉T.harzianum 610和拟康氏木霉T.pseudokoningii 886防治黄瓜枯萎病的盆栽试验,研究这3种木霉菌对黄瓜幼苗生长、膜脂过氧化指标的影响及对黄瓜枯萎病的防治效果。结果表明,木霉菌对黄瓜枯萎病的田间防治效果均达到78%以上,且以棘孢木霉525的田间防治效果最高,达到81.53%。与只接种枯萎病病原菌的对照相比,3株木霉菌单独接种或与黄瓜枯萎病病原菌同时接种均可以显著提高黄瓜幼苗株高、茎粗、叶面积、根体积、地上部鲜重、地下部鲜重,显著提高黄瓜叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、多酚氧化酶(PPO)活性,显著降低质膜透性和丙二醛(MDA)含量,其中以拟康氏木霉886单独接种促进效果最强。研究表明,3种木霉菌通过促进黄瓜幼苗生长,增强植物抗氧化酶活性,降低质膜透性和丙二醛含量,从而提高对黄瓜枯萎病的抗性。
        Cucumber Fusarium wilt is one of the major destructive soil-borne disease in the cucumber production, and the application of biocontrol fungi to control cucumber wilt is of great significance to the safe production of cucumber. To clarify the effect of biocontrol Trichoderma on the growth of cucumber seedlings, membrane lipid peroxidation and the control effect against cucumber Fusarium wilt, three antagonistic fungi against pathogen of cucumber Fusarium wilt, T. asperellum 525, T. harzianum 610 and T. pseudokoningii 886, were used to carry out pot experiment in this paper. The results showed that the field control effect of three Trichoderma strains against cucumber Fusarium wilt were more than 78%, and the field control effect of T. asperellum 525 was the highest, reaching 81.53%. Compared with the treatment with the cucumber Fusarium Wilt pathogen alone, all those treatments with Trichoderma alone and simultaneous inoculation with Trichoderma and pathogen significantly improved cucumber plant height, stem diameter, leaf area, root volume, above ground fresh weight and underground fresh weight of cucumber, increased the activities of superoxide dismutase(SOD), peroxidase(POD), catalase(CAT) and polyphenol oxidase(PPO) activity, and decreased membrane permeability and malondialdehyde(MDA) content. The results indicated that the three Trichoderma strains have the function of controlling cucumber Fusarium wilt and promoting growth of cucumber. Trichoderma can induce cucumber resistance to Fusarium wilt by promoting cucumber seedling growth, increasing plant antioxidant enzyme activity and reducing plasma membrane permeability and malondialdehyde content.
引文
[1]沈辰,熊露,韩书庆,等.我国果菜类蔬菜生产与流通形势分析[J].中国蔬菜,2017(9):7-11
    [2]Shen W,Lin X,Zhang H,et al.Land use intensification affects soil microbial populations,funcional diversity and related suppressiveness of cucumber Fusarium wilt in China's Yangtze River Delta[J].Plant and Soil,2008,306(2):117-127.
    [3]蒲子婧,张艳菊,刘东,等.黄瓜枯萎病生物防治策略研究进展[J].中国蔬菜,2011,1(6):9-14.
    [4]马兴.黄瓜枯萎病生防菌的筛选与鉴定及其生物有机肥的作用效果[D].兰州:甘肃农业大学,2017.
    [5]Gravel V,Antoun H,Tweddell R J.Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride:Possibile role of indole acetic acid(IAA)[J].Soil Biology and Biochemistry,2007,39(8):1968-1977.
    [6]Martinez-Medina A,Del Mar Alguacil M,Pascual J A,et al.Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants[J].Journal of Chemical Ecology,2014,40(7):804-815.
    [7]杨兴堂,吕曼曼,刘志华,等.棘孢木霉对黄花蒿叶的光合特性和产量影响[J].贵州农业科学,2016,44(1):132-136.
    [8]覃柳燕,郭成林,黄素梅,等.棘孢木霉菌株PZ6对香蕉促生效应及枯萎病室内防效的影响[J].南方农业学报,2017,48(2):277-283.
    [9]Segarca G,Casanova E,Bellido D.Proteme salicylic add and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34[J].Proteomcs,2007,7(21):3943-3952.
    [10]Shoresh M,Harman G E.The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root:a proteomic approach[J].Plant Physiology,2008,147(4):2147-2163.
    [11]De-meyer G,Bigirimana J,Elad Y,et al.Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea[J].European Journal of Plant Pathology,1998,104(3):279-286.
    [12]Yedidia I,Benhamou N,Chet I.Induction of defense responses in cucumber plants(Cucumis sativus L.)by the biocontrol agent Trichoderma harzianum[J].Applied and Environmental Microbiology,1999,65(3):1061-1070.[13庄敬华,高增贵,杨长成,等.绿色木霉菌T23对黄瓜枯萎秉防治效果及其几种防御酶活性的影响[J].植物病理学报,2005,35(2):179-183.
    [14]唐琳,赵辉.哈茨木霉菌T6对茄子幼苗根部防御酶系的研究[J].广东农业科学,2011,14:79-81.
    [15]艾力江·麦麦提,齐曼·尤努斯,公勤.Na Cl胁迫对尖果沙枣实生苗膜脂过氧化与抗氧化酶系的影响[J].果树学报,2008,25(4):531-536.
    [16]张素平.毛壳菌菌肥对黄瓜的生长、品质、产量及防病效果的影响[D].泰安:山东农业大学,2016.
    [17]宗兆锋,康振生.植物病理学原理[M].北京:中国农业出版社,2002.
    [18]Harman G E.Myths and dogmas of biocontrol-changes in perceptions derived from research on Trichoderma harzianum T-22[J].Plant Disease,2000,84(4):377-393.
    [19]薛春生,何瑞玒,肖淑芹,等.哈茨木霉菌(Trichoderma harzianum)TR409诱导辣椒防御酶活性变化及防治疫病效果[J].沈阳农业大学学报,2016,47(4):479-483.
    [20]毕卉.不同木霉菌株对黄瓜枯萎病防治作用的研究[D].沈阳:沈阳农业大学,2016.
    [21]谷祖敏,毕卉,张兵,等.不同木霉菌株对黄瓜枯萎病菌的拮抗作用[J].西北农业学报,2018,27(3):426-431.
    [22]Masunaka A,Hyakumachi M,Takenaka S.Plant growth-promoting fungus,Trichoderma koningi suppresses isoflavonoid phytoalexin vestitol production for colonization on/in the roots of Lotus japonicus[J].Microbes Environment,2011,26(2):128-134.
    [23]Yedidia I,Srivastva A K,Kapulnik Y,et al.Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants[J].Plant Soil,2001,235(2):235-242.
    [24]邢芳芳,高明夫,胡兆平,等.木霉菌M2的鉴定及其对小白菜促生效果研究[J].农业资源与环境学报,2017,34(1):80-85.
    [25]张玉鑫,康恩祥,马凌之.Na Cl胁迫对甜瓜幼苗叶片膜脂过氧化和渗透调节物质的影响[J].果树学报,2007,24(2):194-198.
    [26]高增贵,陈捷,刘军华,等.拮抗内生细菌B20-006菌株对玉米主要防御酶系的影响[J].植物病理学报,2007,37(1):102-104.
    [27]刘朝辉,曾华兰,何炼,等.哈茨木霉T23对茄子叶片内防御酶系的影响[J].西南农业学报,2014,27(5):1945-1948.
    [28]刘淑宇,于新,陈发河,等.绿色木霉菌发酵液对芒果炭疽菌胞内抗性酶活性的影响[J].果树学报,2013,30(2):285-290.
    [29]计红芳,宋瑞清,杨谦.绒白乳菇发酵液提取物对杨树叶枯病菌保护酶活性、丙二醛含量及电导率的影响[J].北京林业大学学报,2007,29(6):156-160.
    [30]梁巧兰,张娜,魏列新,等.深绿木霉蛋白质Tra T2A诱导兰州百合抗灰霉病的作用[J].中国生物防治学报,2017,33(4):545-551.
    [31]赵忠娟,扈进冬,吴晓青,等.哈茨木霉LTR-2对蔬菜种子和幼苗耐盐性的影响及其作用机制[J].山东科学,2015,28(5):27-34.
    [32]张林.防治土传病害的几种主要化学农药对木霉菌厚垣孢子的影响[D].北京:中国农业科学院,2014.
    [33]吴右,燕嗣皇,陆德清.木霉菌与戊唑酮配合对西瓜生长的影响和对枯萎病的防效[J].西南农业学报,2002,15(2):65-68.
    [34]杨合同,唐文华,李纪顺,等.绿色木霉LTR-2菌株的紫外线诱变改良[J].中国生物防治,2004,20(3):182-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700