用户名: 密码: 验证码:
基于Fluent的油液减振器气穴现象研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study Based on Fluent for Cavitation Phenomenon of Oil Damper
  • 作者:陈齐平 ; 吴明明 ; 康盛 ; 魏佳成 ; 刘禹 ; 田玥
  • 英文作者:CHEN Qi-ping;WU Ming-ming;KANG Sheng;WEI Jia-cheng;LIU Yu;TIAN Yue;Key Laboratory of Conveyance and Equipment Ministry of Education, East China Jiaotong University;
  • 关键词:油液减振器 ; 气穴现象 ; Fluent ; 分布情况 ; 温度
  • 英文关键词:oil damper;;cavitation phenomenon;;Fluent;;distribution situation;;temperature
  • 中文刊名:YYYQ
  • 英文刊名:Chinese Hydraulics & Pneumatics
  • 机构:华东交通大学载运工具与装备教育部重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:液压与气动
  • 年:2019
  • 期:No.334
  • 基金:国家自然科学基金(51565011);; 江西省重点研发计划(20171BBE50039);; 江西省杰出青年人才资助计划(20171BCB23059)
  • 语种:中文;
  • 页:YYYQ201906008
  • 页数:7
  • CN:06
  • ISSN:11-2059/TH
  • 分类号:38-44
摘要
为了抑制油液减振器气穴现象的产生,分析了减振器复原和压缩过程中气穴的生成过程。基于CFD数值方法,建立了较高精度的减振器三维流体模型和流体网格模型,在Fluent流体软件中进行了仿真分析,获得了油液减振器气穴产生的具体位置和分布情况,分析研究了不同温度对气穴产生的影响,并进行了试验验证。结果表明:气穴现象主要分布于减振器节流阀片周围,随着活塞速度的增大,气穴现象更加明显;其他因素不变,油液的温度越低,气穴现象更加严重。此方法为降低油液减振器异常振动噪声提供了一定的参考价值。
        In order to inhibit cavitation phenomenon in an oil damper, a generation process of cavitation in process of shock absorber recovery and compression is analyzed. Based on the CFD numerical method, a three-dimensional fluid model and a fluid mesh model with high accuracy are established. The simulation analysis is carried out in the fluid software Fluent, and the specific location and distribution of cavitation in oil damper are obtained. The influence of different temperatures on cavitation is analyzed and the simulation results are verified by experiment. The results show that the cavitation phenomenon is mainly distributed around the throttle slice of oil damper; With the increase of the piston speed, the cavitation phenomenon becomes more obvious; other factors remain unchanged, and the lower the temperature of the oil, the more serious cavitation will occur. This method provides a reference value for reducing the abnormal vibration and noise of oil damper.
引文
[1] 吕振华,李世民.筒式液阻减振器动态特性模拟分析技术的发展[J].清华大学学报,2002,42(11):1532-1536.LV Zhenhua,LI Shimin.Development of Simulation and Analysis Technology for Dynamic Characteristics of Cylin-drical Liquid Damper [J].Journal of Tsinghua University,2002,42(11):1532-1536.
    [2] 董小闵,于建强,杨茂举,等.考虑温度因素的磁流变减振器的优化设计与实验[J].振动与冲击,2016,35(8):54-59.DONG Xiaomin,YU Jianqiang,YANG Maoju,et al.Optimal Design and Experiment of Magnetorheological Damper Consi-dering Temperature [J].Vibration and Impact,2016,35(8):54-59.
    [3] SACRAMENTO G,BIERA J.Simulation Tool for Shock Absorber Noise Prediction in Time and Frequency Domains [J].International Journal of Vehicle Noise and Vibration,2007,3(3):217.
    [4] 周长城,王国丽,徐伟.减振器液压气穴与气体反弹现象的研究[J].液压与气动,2007,(8):3-7.ZHOU Changcheng,WANG Guoli,XU Wei.Research on Hydraulic Cavitation and Gas Rebound of Shock Absorber [J].Chinese Hydraulics & Pneumatics,2007,(8):3-7.
    [5] 周长城,李迪.减振器液压气穴机理分析与研究[J].起重运输机械,2008,(1):53-56.ZHOU Changcheng,LI Di.Analysis and Research on Hyd-raulic Cavitation Mechanism of Shock Absorber [J].Lifting and Transportation Machinery,2008,(1):53-56.
    [6] 安成光,曹阳,张建武.双筒式液压减振器节流孔气穴现象和噪声分析[J].上海交通大学学报,2018,52(3):297-304.AN Chengguang,CAO Yang,ZHANG Jianwu.Cavitation Phe-nomenon and Noise Analysis of Throttling Hole of Double-cylinder Hydraulic Shock Absorber [J].Journal of Shanghai Jiaotong University,2018,52(3):297-304.
    [7] LUO T H,JIN R C,JIANG J,et al.Hydraulic Model and Cavitations of Hydraulic Buffer [J].Journal of Chongqing Jiaotong University,2014.
    [8] EC Y,SH L,TW Y,et al.Dynamic Analysis of a Double-tube Shock Absorber for Robust Design [J].Jsme Intern-ational Journal Ser C Mechanical Systems Machine Elements & Manufacturing,1997,40(2):335-345.
    [9] HERR F,JR J.Reducing Shock Absorber Cavitation with Optimized Design by Using Numerical Modeling of Oil Flow [J].Archive of Applied Mechanics,2017.
    [10] SYRAKOS A,DIMAKOPOULOS Y,TSAMOPOULOS J.Theoretical Study of the Flow in a Fluid Damper Containing High Viscosity Silicone Oil:Effects of Shear-thinning and Viscoelasticity [J].Physics of Fluids,2018,30(3):030708.
    [11] BHUYAN D,KUMAR K.3D CAD Modelling and Com-putational Fluid Analysis of Piston Valve of Twin Tube Shock Absorbers [J].Materials Today Proceedings,2017,4(8):7420-7425.
    [12] MURAGENDRA M.A Nonlinear Contact Analysis of an Automotive Shock Absorber Shims Using Fluid Structure Interaction Technique [J].India Altair Technology Con-ference,2013.
    [13] 石运序,张建旭,刘源,等.基于Fluent的微型排气回收高效节能涡轮设计[J].液压与气动,2017(9):38-41.SHI Yunxu,ZHANG Jianxu,LIU Yuan,et al.Design of a Miniature Exhaust Recovery Efficient and Energy-saving Turbine Based on Fluent [J].Chinese Hydraulics & Pneu-matics,2017(9):38-41.
    [14] FUKUMORI Y,HAYASHI R,OKANO H,et al.Study on Coupled Shock Absorber System Using Four Electromagn-etic Dampers [C]// Journal of Physics Conference Series.Journal of Physics Conference Series,2016.
    [15] 税永波,戎红俊,丁渭平.汽车液压减振器抗异响稳健性设计[J].液压与气动,2018(9):20-25.SHUI Yongbo,RONG Hongjun,DING Weiping.Robustness Design of Automobile Hydraulic Shock Absorber Against Abnormal Noise [J].Chinese Hydraulics & Pneumatics,2018(9):20-25.
    [16] SHAMS M,EBRAHIMI R,RAOUFI A,et al.CFD-FEA Analysis of Hudraulic Shock Absorber Valve Behavior [J].International Journal of Automotive Technology,2007,8(5):615-622.
    [17] WANG R,GU F,CATTLEY R,et al.Modelling,Testing and Analysis of a Regenerative Hydraulic Shock Absorber System [J].Energies,2016,9(5):386.
    [18] 贺李平,顾亮,龙凯,等.基于流—固耦合的汽车减振器动态特性仿真分析[J].机械工程学报,2012,48(13):96-101.HE Liping,GU Liang,LONG Kai,et al.Simulation An-alysis of Dynamic Characteristics of Automotive Shock Absorbers Based on Fluid Solid Coupling [J].Chinese Journal of Mechanical Engineering,2012,48(13):96-101.
    [19] YANG J,HU H,LIU K,et al.Thermal Analysis of Fluid-solid Coupling of a High-speed Marine Engine Exhaust Pipe Based on Transition [J].Ship Engineering,2017.
    [20] MAO Y C.Nonlinear Modeling with Cavitation Pheno-menon of a Novel Shock Absorber for Above-knee Prost-hesis [J].International Journal of Information Acquisi-tion,2010,7(3):243-257.
    [21] 刘华坪,陈浮,马波.基于动网格与UDF技术的阀门流场数值模拟[J].汽轮机技术,2008,50(2):106-108.LIU Huaping,CHEN Fu,MA Bo.Numerical Simulation of Valve Flow Field Based on Dynamic Grid and UDF Tec-hnology [J].Steam Turbine Technology,2008,50(2):106-108.
    [22] LIANG L,TIAN L,ZHANG Y Q,et al.Twin Tube Shock Absorber Thermo-mechanical Coupling Simulation [J].Advanced Materials Research,2012,(566):669-675.
    [23] NOCHNICHENKO I,UZUNOV O.Characteristics of Throttles in Hydraulic Shock Absorber Considering Temperature Ch-anges of Fluid [J].Mechanics and Advanced Technolo-gies,2017,80(2):39-44.
    [24] CHEN K,YU X P,ZHENG H M,et al.Stochastic Thermodynamic Model and Oil Temperature Change of Hydraulic Shock Absorber [J].Chinese Journal of Computational Mechanics,2017,34(4):523-528.
    [25] NIASAR M,CLEMENCE R,WANG X,et al.Effect of Temperature on Surface Discharge in Oil [C]// Electrical Insulation and Dielectric Phenomena.IEEE,2012:96-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700