用户名: 密码: 验证码:
热缔合型阳离子纤维素的制备及性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and Properties of Thermo-associative Cationic Cellulose
  • 作者:邱日圆 ; 具本植 ; 张淑芬
  • 英文作者:QIU Ri-yuan;JU Ben-zhi;ZHANG Shu-fen;State Key Laboratory of Fine Chemicals, Dalian University of Technology;
  • 关键词:阳离子纤维素 ; 温敏增稠 ; 亲水-亲油平衡 ; 热缔合 ; 功能材料
  • 英文关键词:cationic cellulose;;thermothickening;;hydrophilic-lipophilic equilibrium;;thermo-associative;;functional materials
  • 中文刊名:JXHG
  • 英文刊名:Fine Chemicals
  • 机构:大连理工大学精细化工国家重点实验室;
  • 出版日期:2019-04-10 15:37
  • 出版单位:精细化工
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(21376041,21878036)
  • 语种:中文;
  • 页:JXHG201908004
  • 页数:6
  • CN:08
  • ISSN:21-1203/TQ
  • 分类号:25-30
摘要
以羟乙基纤维素(HEC)、正丁基缩水甘油醚(BGE)和2,3-环氧丙基三甲基氯化铵(GTA)为原料,通过改变纤维素衍生物亲水基和疏水基的比例调控亲水-亲油平衡的方法制备了热缔合型阳离子纤维素(TACC)。首先,HEC与BGE反应制备了疏水化纤维素(HBPEC);然后,HBPEC与不同质量的GTA反应制备了4种不同GTA取代度的热缔合型阳离子纤维素(TACC)。采用FTIR、~1HNMR、元素分析对TACC进行了表征,证实TACC上已成功接枝了BGE和GTA。考察了GTA取代度、TACC质量浓度、NaCl浓度及剪切速率对TACC温敏增稠性能的影响。结果表明:40℃下,当GTA的取代度从0.12增加到0.32时,15 g/L的TACC水溶液的最大黏度(η_(max))从13 mPa·s增大到54 mPa·s,最大与最小黏度比(η_(max)/η_(min))从1.5增加到7.0,与最大黏度对应的温度(T_(max))从25℃升高到40℃;TACC浓度的增大使水溶液黏度及温敏增稠性能提高;相反地,NaCl浓度的增加会使TACC水溶液的黏度和温敏增稠性能降低,且会使T_(max)减小。
        Hydroxyethyl cellulose(HEC), butyl glycidylether(BGE) and 2,3-epoxypropyl trimethyl ammonium chloride(GTA) were used as raw materials to synthesize thermo-associative cationic cellulose(TACC) by changing the ratio of hydrophilic and hydrophobic groups of cellulose derivatives to adjust the hydrophilic-lipophilic equilibrium. Firstly, HEC reacted with hydrophobic reagent BGE to prepare hydrophobic cellulose(HBPEC), and further reacted with cationic reagent GTA of different mass to prepare four kinds of thermo-associative cationic cellulose(TACC) with different degrees of substitution of GTA.The obtained products were characterized by FTIR, ~1HNMR and elemental analyses.The results showed that BGE and GTA were successfully grafted onto TACC. The influences of substitution degree of GTA,mass concentration of TACC,concentration of NaCl and the shear rate on the thermothickening properties of TACC were investigated.The results showed that when the substitution degree of GTA increased from 0.12 to 0.32 at 40 ℃, the maximum viscosity(η_(max)) value of 15 g/L TACC aqueous solution increased from 13 m Pa·s to 54 mPa·s, the ratio of maximum and minimum viscosity(η_(max)/η_(min)) increased from 1.5 to 7.0, and the temperature corresponding to the maximum viscosity(T_(max)) increased from 25 ℃ to 40 ℃. The increase of TACC concentration inaqueous solution enhanced its viscosity and thermothickening properties. On the contrary, the increase of NaCl concentration reduced the viscosity and thermothickening properties of TACC aqueous solution, and decreased T_(max).
引文
[1]Hourdet D,L'alloret F,Audebert R.Synthesis of thermoassociative copolymers[J].Polymer,1997,38(10):2535-2547.
    [2]Hourdet D,L'alloret F,Audebert R.Reversible thermothickening of aqueous polymer solutions[J].Polymer,1994,35(12):2624-2630.
    [3]Durand A,Hourdet D.Thermoassociative graft copolymers based on poly(N-isopropylacrylamide):Relation between the chemical structure and the rheological properties[J].Macromolecular Chemistry and Physics,2000,201(8):858-868.
    [4]Durand A,Hourdet D.Thermoassociative graft copolymers based on poly(N-isopropylacrylamide):effect of added co-solutes on the rheological behavior[J].Polymer,2000,41(2):545-557.
    [5]Tardajos M G,Cama G,Dash M,et al.Chitosan functionalized poly-ε-caprolactoneelectrospun fibers and 3D printed scaffolds as antibacterial materials for tissue engineering applications[J].Carbohydrate Polymers,2018,191:127-135.
    [6]Chen Q,Wang Y,Lu Z,et al.Thermoviscosifying polymer used for enhanced oil recovery:rheological behaviors and core flooding test[J].Polymer Bulletin,2013,70(2):391-401.
    [7]Karakasyan C,Lack S,Brunel F,et al.Synthesis and rheological properties of responsive thickeners based on polysaccharide architectures[J].Biomacromolecules,2008,9(9):2419-2429.
    [8]Su X,Feng Y.Thermoviscosifying smart polymers for oil and gas production:state of the art[J].Chem Phys Chem,2018,19(16):1941-1955.
    [9]Iyer N P,Hourdet D,Badiger M V,et al.Synthesis and swelling behaviour of hydrophobically modified responsive polymers in dilute aqueous solutions[J].Polymer,2005,46(26):12190-12199.
    [10]Aricov L,B?ran A,Simion E L,et al.New insights into the self-assembling of some hydrophobically modified polyacrylates in aqueous solution[J].Colloid and Polymer Science,2016,294(4):667-679.
    [11]Gouveia L M,Grassl B,Müller A J.Synthesis and rheological properties of hydrophobically modified polyacrylamides with lateral chains of poly(propylene oxide)oligomers[J].Journal of Colloid and Interface Science,2009,333(1):152-163.
    [12]Wang Y,Feng Y,Wang B,et al.A novel thermoviscosifying water-soluble polymer:synthesis and aqueous solution properties[J].Journal of Applied Polymer Science,2010,116(6):3516-3524.
    [13]Zhang Xiaohong(张小红),Cui Yingde(崔英德),Pan Zhanchang(潘湛昌).Preparation and biodegradability of acrylic acid/sodium polymannuronate super absortbent[J].Journal of Chemical Industry and Engineering(化工学报),2005,56(6):1134-1137.
    [14]Yao Mu(姚穆),Sun Runjun(孙润军),Chen Meiyu(陈美玉),et al.Development and utilization of plant cellulose,lignin and hemicellulose and so on[J].Fine Chemicals(精细化工),2009,26(10):937-941.
    [15]Tsioptsias C,Stefopoulos A,Kokkinomalis I,et al.Development of micro-and nano-porous composite materials by processing cellulose with ionic liquids and supercritical CO2[J].Green Chemistry,2008,10(9):965-971.
    [16]Desbrieres J,Hirrien M,Ross-Murphy S B.Thermogelation of methylcellulose:rheological considerations[J].Polymer,2000,41(7):2451-2461.
    [17]Guo Ming(郭明),Wang Peng(王鹏),Wang Chunpeng(王春鹏),et al.Biodegradability of hydroxyethyl cellulose/poly(caprolactone)graft copolymer[J].Polymer Materials Science and Engineering(高分子材料科学与工程),2009,25(10):121-123.
    [18]Tian Ye(田野),Ju Benzhi(具本植),Zhang Shufen(张淑芬).Synthesis and self-assembly behavior of temperature responsive2-hydroxy-3-isopropoxypropyl hydroxyethylcellulose[J].Acta Chimica Sinica(化学学报),2016,74(4):369-374.
    [19]Tizzotti M,Creuzet C,Labeau M P,et al.Synthesis of temperature responsive biohybrid guar-based grafted copolymers by click chemistry[J].Macromolecules,2010,43(16):6843-6852.
    [20]Fan G,Guo J,Dong M,et al.Thermothickening behavior of graft copolymers containing poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)side chains in aqueous solution[J].Journal of Macromolecular Science,Part A,2014,51(11):881-890.
    [21]Viken A L,Skauge T,Svendsen P E,et al.Thermothickening and salinity tolerant hydrophobically modified polyacrylamides for polymer flooding[J].Energy&Fuels,2018,32(10):10421-10427.
    [22]Guo Ruiwei(郭睿威),Lu Xiandong(鹿现栋),Fang Daobin(方道斌).Synthesis and characterization of thermoassociating graft copolymer PAM-g-PNIPAm[J].Chemical Journal of Chinese Universities(高等学校化学学报),2003,24(7):1311-1314.
    [23]Xie Binqiang(谢彬强),Qiu Zhengsong(邱正松).Effect of polymer P(NaAMPS-VCL-DVB)molecular structure on temperaturesensitive association behavior[J].Polymer Materials Science&Engineering(高分子材料科学与工程),2014,30(11):73-77.
    [24]Wang M,Sun G,Han P,et al.Thermoviscosifying polymers based on polyether prepared from inverse emulsion polymerization[J].Journal of Applied Polymer Science,2018,135(39):46696-46705.
    [25]Bai Rongguang(白荣光),Guo Ruiwei(郭睿威),Cai Chao(蔡超).Thermothickening properties of graft copolymer HPAM-gPNIPAm[J].Journal of Chemical Industry and Engineering(化工学报),2007,58(9):2388-2394.
    [26]Díaz-Silvestre S E,St Thomas C,Maldonado-Textle H,et al.Effect of N-isopropylacrylamide thermoresponsive blocks on the rheological properties of water-soluble thermoassociative copolymers synthesized via RAFT polymerization[J].Colloid and Polymer Science,2018,296(10):1699-1710.
    [27]Xie Luyao(谢璐瑶),Cheng Jinliang(程金梁),Feng Yujun(冯玉军),et al.Synthesis and properties of thermoviscosifying polyeher-based graft polymers[J].Polymer Materials Science&Engineering(高分子材料科学与工程),2016,32(7):29-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700