用户名: 密码: 验证码:
方镁石高压结构预测和高温结构稳定性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High-pressure structure prediction and high-temperature structural stability of periclase
  • 作者:宋婷 ; 孙小伟 ; 魏小平 ; 欧阳玉花 ; 张春林 ; 郭鹏 ; 赵炜
  • 英文作者:Song Ting;Sun Xiao-Wei;Wei Xiao-Ping;Ouyang Yu-Hua;Zhang Chun-Lin;Guo Peng;Zhao Wei;School of Mathematics and Physics, Lanzhou Jiaotong University;
  • 关键词:方镁石 ; 结构相变 ; 熔化 ; 高压 ; 高温
  • 英文关键词:periclase;;structural phase transition;;melting;;high pressure;;high temperature
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:兰州交通大学数理学院;
  • 出版日期:2019-05-30 14:01
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:11464027,51562021);; 兰州交通大学优秀科研团队(批准号:201803)和兰州交通大学“百名青年优秀人才培养计划”资助的课题~~
  • 语种:中文;
  • 页:WLXB201912023
  • 页数:11
  • CN:12
  • ISSN:11-1958/O4
  • 分类号:220-230
摘要
方镁石是镁方铁矿的终端组分,化学组成为氧化镁(MgO).理论预测的MgO熔化线和高压下实验测量结果之间存在巨大的分歧,为澄清歧见人们展开了对MgO高压结构的进一步研究,方镁石MgO高压结构预测及温度对结构稳定性的影响一直是高压凝聚态物理和地球物理领域的重要研究内容.本文利用基于密度泛函理论的第一性原理计算方法,对MgO实验结构、各种可能存在的结构及基于粒子群优化算法预测的晶体结构进行了系统深入的研究,发现MgO在0—580 GPa的压力范围内一直以稳定岩盐结构存在,580—800 GPa压力范围内的稳定结构为氯化铯结构.尽管NiAs六角密堆结构和纤锌矿结构能合理解释冲击压缩实验中沿MgO的P-V雨贡纽线在(170±10) GPa存在体积不连续的原因(Zhang L, Fei Y W 2008 Geophys.Res.Lett. 35 L13302)和高压下理论计算的熔化线与实验结果相差很大的原因(Aguado A, Madden P A 2005Phys.Rev.Lett.94 068501),但这两种结构连同闪锌矿结构及基于粒子群优化算法预测的晶体结构B8_2和P3m1仅为其亚稳结构.在MgO高压结构稳定性预测的基础上,本文利用经典分子动力学方法,分别引入能很好描述离子极化特性的壳层模型和离子压缩效应的呼吸壳层模型,对MgO岩盐结构的高温稳定性进行了模拟研究,给出了压力达150 GPa的高压熔化相图.
        Periclase is the terminal component of the ferropericlase, and its chemical composition is MgO. It is well known that there exists a huge difference between the melting curves of MgO determined experimentally and theoretically. A feasible way to clarify the nature of the melting temperature is to investigate the possible new phase of MgO. Meanwhile, it is very important to study the new phase and the influence of temperature on structural stability of MgO in high-pressure condensed matter physics and geophysics. In the present work, we study in detail the phase stability and the possible existing structures of MgO, which include the structure predicted by particle swarm optimization algorithm through using the first-principles pseudopotential density functional method. We find that MgO crystallizes into a rocksalt structure in a pressure range from 0 to580 GPa and that the CsCl-type structure is of a high-pressure phase at up to 800 GPa. Although an NiAs-type hexagonal phase perhaps explains the volume discontinuity at(170 ± 10) GPa along the MgO Hugoniot in a shock-compression experiment(Zhang L, Fei Y W 2008 Geophys. Res. Lett. 35 L13302) and a wurtzite phase perhaps explains the huge difference between the melting curves of MgO determined experimentally and theoretically(Aguado A, Madden P A 2005 Phys. Rev. Lett. 94 068501), neither of them is existent in the entire range of pressures studied, according to the thermodynamic stability calculations. The calculations of phonon spectra indicate that the B3, B4, B8_1, B8_2, and P3 m1 phases of MgO are dynamically stable at zero pressure.That is to say, all of the predicted structures are the metastable structures of MgO. In addition, the hightemperature structural stability of MgO is investigated by using very similar Lewis-Catlow and StonehamSangster shell model potential based on the classical molecular dynamics(MD) simulations. In order to take into account the non-central force in crystal, the breathing shell model is also introduced in simulation. The thermodynamic melting curves are estimated on the basis of the thermal instability MD simulations and compared with the available experimental data and other theoretical results in the pressure range of 0-150 GPa.
引文
[1] Wood B J, Nell J 1991 Nature 351 309
    [2] Fei Y W 1999 Am. Meniral. 84 272
    [3] Zhang L, Fei Y W 2008 Geophys. Res. Lett. 35 L13302
    [4] Francis M F, Taylor C D 2013 Phys. Rev. B 87 075450
    [5] Hong N V, Lan M T, Hung P K 2012 High Pressure Res. 32509
    [6] Aguado A, Madden P A 2005 Phys. Rev. Lett. 94 068501
    [7] Yan Q, Rinke P, Winkelnkemper M, Qteish A, Bimberg D,Scheffler M, van de Walle C G 2012 Appl. Phys. Lett. 101152105
    [8] Joshi K, Sharma B, Paliwal U, Barbiellini B 2012 J. Mater.Sci. 47 7549
    [9] Duffy T S, Hemley R J, Mao H K 1995 Phys. Rev. Lett. 741371
    [10] Song T, Sun X W, Liu Z J, Kong B, Quan W L, Fu Z J, Li J F, Tian J H 2012 Phys. Scr. 85 045702
    [11] Sims C E, Barrera G D, Allan N L, Mackrodt W C 1998Phys. Rev. B 57 11164
    [12] Oganov A R, Gillan M J, Price G D 2003 J. Chem. Phys. 11810174
    [13] Zerr A, Boehler R 1994 Nature 371 506
    [14] Anderson O L, Duba A 1997 J. Geophys. Res. 102 22659
    [15] Sun X W, Chen Q F, Chu Y D, Wang C W 2005 Physica B370 186
    [16] Dubrovinsky L, Dubrovinskaia N, Prakapenka V B,Abakumov A M 2012 Nature Communs. 3 1163
    [17] Wang Y C, L(u|¨)J, Zhu L, Ma Y M 2010 Phys. Rev. B 82094116
    [18] L(u|¨)J, Wang Y C, Zhu L, Ma Y M 2011 Phys. Rev. Lett. 106015503
    [19] Li Y, Hao J, Liu H, Li Y, Ma Y 2014 J. Chem. Phys. 140174712
    [20] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V,Shylin S I 2015 Nature 525 73
    [21] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, Ma Y 2017Phys. Rev. Lett. 119 107001
    [22] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
    [23] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 773865
    [24] Blochl P E 1994 Phys. Rev. B 50 17953
    [25] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
    [26] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 Phys. Condens. Matter. 142717
    [27] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A,Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys.Rev. Lett. 100 136406
    [28] Vanderbilt D 1990 Phys. Rev. B 41 7892
    [29] Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768
    [30] Gonze X, Lee C 1997 Phys. Rev B. 55 10355
    [31] Fincham D 1992 Mol. Sim. 8 165
    [32] Dick B G, Overhauser A W 1958 Phys. Rev. 112 90
    [33] Lewis G V, Catlow C R A 1985 J. Phys. C:Solid State Phys.18 1149
    [34] Stoneham A M, Sangster M J L 1985 Phil. Mag. B 52 717
    [35] Catlow C R A, Faux I D, Norgett M J 1976 J. Phys. C:Solid State Phys. 9 419
    [36] Henkelman G, Uberuaga B P, Harris D J, Harding J H, AllanN L 2005 Phys. Rev. B 72 115437
    [37] Mao H K, Bell P M 1979 J. Geophys. Res. 84 4533
    [38] Song T, Sun X W, Wang R F, Lu H W, Tian J H 2011Physica B 406 293
    [39] Sun X W, Song T, Chu Y D, Liu Z J, Zhang Z R, Chen Q F2010 Solid State Commun. 150 1785
    [40] Jeanloz R, Ahrens T J, Mao H K, Bell P M 1979 Science 206829
    [41] Phillips J C 1971 Phys. Rev. Lett. 27 1197
    [42] van Camp P E, van Doren V E 1996 J. Phys.:Condens.Matter 8 3385
    [43] Cai Y X, Wu S T, Xu R, Yu J 2006 Phys. Rev. B 73 184104
    [44] Luo F, Cheng Y, Cai L C, Chen X R 2013 J. Appl. Phys. 113033517
    [45] Speziale S, Zha C S, Duffy T S, Hemley R J, Mao H K 2001J. Geophys. Res. 106 515
    [46] Lu K, Li Y 1998 Phys. Rev. Lett. 80 4474
    [47] Riley B 1966 Rev. Int. Hautes Temp. Refract. 3 327
    [48] Tallon J L 1989 Nature 342 658
    [49] Belonoshko A B, Dubrovinsky L S 1996 Am. Mineral. 81 303
    [50] Wang Z, Tutti F, Saxena S K 2001 High Temp.-High Press.33 357
    [51] Lindemann F A 1910 Z. Phys. 11 609
    [52] Luo S N, Strachan A, Swift D C 2004 J. Chem. Phys. 12011640

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700