用户名: 密码: 验证码:
内置电热层实木复合地板表面温度变化规律及模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Change law and simulation of surface temperature for electric heating engineered wood flooring with built-in electrothermal layer
  • 作者:梁善庆 ; 李思程 ; 柴媛 ; 傅峰
  • 英文作者:Liang Shanqing;Li Sicheng;Chai Yuan;Fu Feng;Research Institute of Wood Industry,Chinese Academy of Forestry;School of Technology,Beijing Forestry University;
  • 关键词:电热层 ; 实木复合地板 ; 电热性能 ; 表面温度 ; 功率密度
  • 英文关键词:electrothermal layer;;engineered wood flooring;;electrothermal performance;;surface temperature;;power density
  • 中文刊名:BJLY
  • 英文刊名:Journal of Beijing Forestry University
  • 机构:中国林业科学研究院木材工业研究所;北京林业大学工学院;
  • 出版日期:2018-11-15
  • 出版单位:北京林业大学学报
  • 年:2018
  • 期:v.40
  • 基金:中央级公益性科研院所基本科研业务费专项(CAFYBB2016MB001)
  • 语种:中文;
  • 页:BJLY201811013
  • 页数:11
  • CN:11
  • ISSN:11-1932/S
  • 分类号:116-126
摘要
【目的】研究不同电热层位置和不同结构的电热实木复合地板温度变化规律,为电热实木复合地板的电热性能及结构优化提供理论参考。【方法】采用碳纤维纸作为发热元件,通过热压方式制备具有电热功能的实木复合地板,测试了通电荷载后时间-温度效应、温度不均匀度、电-热辐射转换效率和表面网格温度,分析不同电热层位置对表面温度、温度不均匀度和电-热辐射转换效率的影响,模拟了表面温度二维和三维分布图,探讨不同结构电热实木复合地板正面和背面温度变化规律,拟合了时间-温度变化曲线幂函数方程。【结果】表面温度均随通电荷载时间的增加而增加,最终趋于稳定,切断电源以后,温度快速下降直至与环境温度平衡。随电热层位置下移,发热稳定后表面温度随之降低,电-热辐射转换效率也相应降低。功率密度为200、300、400和500 W/m~2,电热层位于近表层时,表面温度比底层温度分别高了17.2%、21.8%、24.8%和26.8%。随功率密度的增加,温度不均匀度增加,电-热辐射转换效率也随之增加,功率密度达到500 W/m~2时,电热层位于近表层的电-热辐射转换效率达95.6%。二维和三维模拟图表明:表面温度分布总体呈中间高、四周低趋势,电热层位于表层尤为明显且存在聚热现象。不同结构电热实木复合地板正面表面温度随通电荷载时间增加而增加,背面木材厚度越厚,正面表面温度越高,反之背面温度越低,拟合方程表明时间-温度变化呈幂函数关系,决定系数最高达0.999 9。【结论】电热层位置和地板结构对电热实木复合地板表面温度和电-热辐射转换效率影响显著,电热层位于近表层时更有利于电热性能改善。
        [Objective]The temperature variation characteristics of electric heating engineered wood flooring(EHEWF) with different electrothermal layer positions and different structures were investigated in this study,which provides theoretical reference for electrothermal performance and structure optimization of EHEWF.[Method]Carbon fiber paper was used as heating element to manufactured EHEWF by hot pressing method.The time-temperature effect,temperature unevenness,electric-toradiant power transfer efficiency and surface grid temperature were investigated and analyzed after heating,also simulated the two-dimensional and three-dimensional distribution of surface temperature.The front and back surface temperature rise law of different structure EHEWF were explored and fitted power-function equation of time-temperature curves.[Result]The results showed that the surface temperature increased with the increase of conductive time,and finally stabilized.After the power was cut off,the temperature began to decrease rapidly until it was in equilibrium with the ambient temperature.As the position of electrothermal layer moved down,the surface temperature decreased after heating stabilized,the electric-to-radiant power transfer efficiency was also reduced accordingly.When the power density was respectively 200,300,400 and 500 W/m~2,the surface temperature of electrothermal layer locating near surface layer was 17.2%,21.8%,24.8% and 26.8% higher than the bottom layer.With the increase of power density,the temperature unevenness and electric-to-radiant power transfer efficiency also increased,the electric-to-radiant power transfer efficiency of electrothermal layer locating near surface layer was 95.6% as power density 500 W/m~2.Two-dimensional and threedimensional simulation showed that the overall trend of surface temperature distribution was middle higher than periphery.The temperature trend was especially prominent for electrothermal layer locating surface layer and there was a phenomenon of heat accumulation.The front surface temperature of different structural EHEWF increased with the increase of the load time.The thicker the back surface wood was,the higher the front surface temperature was,and the lower the back temperature was.The fitting equation showed that the time-temperature change was power function,and coefficient of determination was up to 0.999 9.[Conclusion]The electrothermal layer location and floor structure have significant effects on the surface temperature and electric-to-radiant power transfer efficiency.When the electrothermal layer is located near the surface layer,it is more beneficial to improve the electrothermal performance.
引文
[1]Claes B Q.Conversion of electric heating in buildings:an unconventional alternative[J].Energy&Buildings,2008,40(12):2188--2195.
    [2]凌继红,张于峰,董颖,等.低温热水地板辐射供暖系统的理论研究[J].工程热物理学报,2002,23(增刊1):145-148.Ling J H,Zhang Y F,Dong Y,et al.Theoretical study on low temperature hot water floor panel heating system[J].Journal of Engineering Thermophysics,2002,23(Suppl.1):145--148.
    [3]李国建,冯国会,朱能,等.新型相变储能电热地板采暖系统[J].沈阳建筑大学学报(自然科学版),2006,22(2):294-298.Li G J,Feng G H,Zhu N,et al.Experiment of the new phasechange heat-storage electric heating floor system[J].Journal of Shengyang Jianzhu University(Natural Science),2006,22(2):294-298.
    [4]蔺洁,谢静超,陈超,等.低温热水地板辐射换热器传热简化模型的改进[J].北京工业大学学报,2013,39(7):1078-1083.Lin J,Xie J C,Chen C,et al.Improvement of the simplified heat transfer model for low-temperature hot water floor heat exchanger[J].Journal of Beijing University of Technology,2013,39(7):1078-1083.
    [5]Jeon G W,Jeong Y G.Electric heating films based on m-aramid nanocomposites containing hybrid fillers of graphene and carbon nanotube[J].Journal of Materials Science,2013,48(11):4041--4049.
    [6]杨保铈,贺绍均,王丰,等.杉木集成材薄板制备电热地板的热工性能[J].林业工程学报,2016,1(1):46-50.Yang B S,He S J,Wang F,et al.Thermal performance of electrically heated flooring prepared by thin Chinese fir glulam[J].Journal of Forestry Engineering,2016,1(1):46-50.
    [7]袁全平,梁善庆,曾宇,等.内置电热层电采暖木竹地板技术现状[J].林产工业,2015,42(8):6--9,17.Yuan Q P,Liang S Q,Zeng Y,et al.Discussion on technology status of electric heating wood and bamboo floor with built-in electrothermal layer[J].China Forest Products Industry,2015,42(8):6-9,17.
    [8]肖瑞崇,陈玉和,包永洁,等.竹木电热复合材料的通电老化性能研究[J].木材工业,2017,31(4):19--23.Xiao R C,Chen Y H,Bao Y J,et al.Electrifying aging performance of bamboo-wood thermoelectric composites[J].China Wood Industry,2017,31(4):19--23.
    [9]袁全平,梁善庆,傅峰.碳纤维电热功能复合纤维板的制备工艺[J].木材工业,2017,31(4):14--18.Yuan Q P,Liang S Q,Fu F.Electric heating composites made from carbon fiber paper and fiberboard[J].China Wood Industry,2017,31(4):14--18.
    [10]张泽前,吴再兴,陈玉和,等.电热竹木复合地板的制备工艺[J].木材工业,2016,30(1):14--17.Zhang Z Q,Wu Z X,Chen Y H,et al.Manufacturing technology for electrically heating engineered flooring made from bamboo and wood[J].China Wood Industry,2016,30(1):14--17.
    [11]黄成建,包永洁,李能,等.不同胶黏剂竹木复合电热地板的基本特性[J].浙江农林大学学报,2017,34(2):369-373.Huang C J,Bao Y J,Li N,et al.Adhesives used to make bamboo/wood composite electro-thermal plywood[J].Journal of Zhejiang A&F University,2017,34(2):369--373.
    [12]阙泽利,赵晓旭,李哲瑞,等.小径级杉木制备内置碳纤维电热线地热地板[J].木材工业,2015,29(4):9-13.Que Z L,Zhao X X,Li Z R,et al.Electrically heated flooring made with hexagon glulam from small-diameter Chinese fir[J].China Wood Industry,2015,29(4):9-13.
    [13]华毓坤,傅峰.导电胶合板的研究[J].林业科学,1995,31(3):254-259.Hua Y K,Fu F.Studies on electrically conductive plywood[J].Scientia Silvae Sinicae,1995,31(3):254--259.
    [14]Yuan Q P,Fu F.Application of carbon fiber paper in integrated wooden electric heating composite[J].Bioresources,2014,9(3):5662-5675.
    [15]周兆兵,朱兆龙,薛宏,等.内置式发热实木复合地板的电热性能[J].东北林业大学学报,2018,46(2):53-58.Zhou Z B,Zhu Z L,Xue H,et al.Electrothermal performance of built-in heating parquet[J].Journal of Northeast Forestry University,2018,46(2):53--58.
    [16]中华人民共和国住房和城乡建设部.低温辐射电热膜:JG/T286-2010[S].北京:中国标准出版社,2010.Ministry of Housing and Urban-rural Development of the People's Republic of China.Electric radiant heating film for low temperature:JG/T 286-2010[S].Beijing:Standards Press o China,2010.
    [17]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.红外辐射加热器试验方法:GB/T 7287-2008[S].北京:中国标准出版社,2008.General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,Standardization Administration of the People's Republic of China.Test method of infrared heater:GB/T 7287-2008[S].Beijing:Standards Press of China,2010.
    [18]陈瑞英,谢拥群,杨庆贤,等.木材横纹导热系数的类比法研究[J].林业科学,2005,41(1):123--126.Chen R Y,Xie Y Q,Yang Q X,et al.Study on wood therma conductivity in transverse direction by analogism[J].Scientia Silvae Sinicae,2005,41(1):123--126.
    [19]姚武,张超.碳纤维水泥基材料的电热效应[J].材料开发与应用,2007,22(1):17-20.Yao W,Zhang C.Electro-thermal effect of carbon fiber reinforced cement composites[J].Development and Application of Materials,2007,22(1):17-20.
    [20]Zhang H,Song X.Operating characteristic analysis on the ultrathin low temperature floor-heating system[J].Frontiers of Structural&Civil Engineering,2013,7(2):127-132.
    [21]施志钢,张伟光,刘龙.电热膜启动特性和局部聚热的实验研究[J].暖通空调,2018,48(2):113--116,101.Shi Z G,Zhang W G,Liu L.Experimental study on startup characteristics and local heat accumulation of electric radiant heating film[J].Heating Ventilating&Air Conditioning,2018,48(2):113-116,101.
    [22]袁全平,木质电热复合材料的电热响应机理及性能研究[D].北京:中国林业科学研究院,2015:115-119.Yuan Q P.Performance and electric heating response mechanism of wooden electric heating composites.[D].Beijing:Chinese Academy of Forestry,2015:115-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700