用户名: 密码: 验证码:
缓释左氧氟沙星三维丝素蛋白/壳聚糖/纳米羟基磷灰石复合骨组织工程支架材料的制备与表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and characterization of sustained-release levofloxacin bone tissue-engineered three-dimensional silk fibroin/chitosan/nano-hydroxyapatite scaffold
  • 作者:叶鹏 ; 骆付丽 ; 刘安平 ; 段海真 ; 胡权 ; 黄文金 ; 程云 ; 喻安永
  • 英文作者:Ye Peng;Luo Fuli;Liu Anping;Duan Haizhen;Hu Quan;Huang Wenjin;Cheng Yun;Yu Anyong;Department of Trauma Emergence,Affiliated Hospital of Zunyi Medical University;
  • 关键词:氧氟沙星 ; 丝素蛋白 ; 壳聚糖 ; 羟基磷灰石类 ; 组织工程 ; 左氧氟沙星 ; 骨组织支架 ; 羟基磷灰石 ; 骨缺损 ; 生物材料
  • 英文关键词:,Ofloxacin;;Silk;Chitosan;;Hydroxyapatites;;Tissue Engineering
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:遵义医学院附属医院急救创伤病区;
  • 出版日期:2019-02-27
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.871
  • 基金:国家自然科学基金地区科学基金(A304);国家自然科学基金地区科学基金(A226),项目负责人:喻安永~~
  • 语种:中文;
  • 页:XDKF201914005
  • 页数:9
  • CN:14
  • ISSN:21-1581/R
  • 分类号:21-29
摘要
背景:课题组前期实验成功制备了三维丝素蛋白/壳聚糖/纳米羟基磷灰石复合骨组织工程支架材料。目的:制备缓释左氧氟沙星的三维丝素蛋白/壳聚糖/纳米羟基磷灰石复合骨组织工程支架材料,探讨其机械性能、物理特性和化学构成及抗生素缓释能力。方法:采用乳化固定过滤方法制备左氧氟沙星/壳聚糖载药微球,其中左氧氟沙星与壳聚糖的质量比为3/1。将5,7.5,10 g的载药微球分别加入质量分数2%的丝素蛋白/壳聚糖/纳米羟基磷灰石混合溶液中,通过冷冻干燥化学交联得到负载抗生素支架。对负载抗生素的支架进行扫描电镜观察、化学成分分析、药物缓释性能及力学、孔隙率、吸水膨胀率、热水溶失率检测。结果与结论:①扫描电镜显示,支架内壁可见载药微球,并且随着载药微球质量的增加,负载抗生素支架的空隙密度逐渐减小;②能谱分析显示,3种负载抗生素支架均含有丰富的钙离子、磷离子;③3种负载抗生素支架的释放趋势相同,在前3 d释放大于50%,呈突释效应,而后进入相对平稳的释放阶段;负载10 g载药微球支架的药物释放速率最慢,负载5g载药微球支架的药物释放速率最快;④随着载药微球质量的增加,负载抗生素支架的抗压能力与抗牵张能力逐渐增加,孔隙率、平均孔径、吸水膨胀率逐渐减小,热水溶失率逐渐增加;⑤结果表明,采用冷冻干燥化学交联法可合成负载氧氟沙星的三维骨组织工程支架,其具有良好的缓释性能、抗压抗压缩能力、吸水率及热水溶失率。
        BACKGROUND: Preliminary study has prepared the three-dimensional silk fibroin/chitosan/nano-hydroxyapatite scaffold successfully.OBJECTIVE: To explore the mechanical properties, physical characteristics, chemical composition and antibiotic sustained-release ability of three-dimensional silk fibroin/chitosan/nano-hydroxyapatite scaffold loaded with levofloxacin. METHODS: Levofloxacin/chitosan(3:1) microspheres were constructed by emulsion settlement filter method. 5, 7.5 and 10 g of microspheres were added into 2% of silk fibroin/chitosan/nano-hydroxyapatite mixed solution through freeze drying and chemical cross-linking to obtain the scaffolds loaded with antibiotics. The scaffolds loaded with antibiotics underwent scanning electron microscope observation, and chemical composition analysis. The sustained release, mechanical properties, porosity, water absorption expansion rate and hot water soluble loss rate were detected. RESULTS AND CONCLUSION:(1) Scanning electron microscope observed that there were drug microspheres at the inner wall of the scaffold, and the voidage was decreased with mass of microspheres increasing.(2) Energy spectrum analysis showed that the three kinds of scaffolds were rich in calcium and phosphonium ions.(3) The three kinds of scaffolds showed the same releasing trend, which presented with sudden-release effect at the former 3 days(release > 50%), and then tended to be stable. The release rate was the slowest in the scaffold loaded with 10 g of microscopes, and the rapidest in the scaffold loaded with 5 g of microscopes.(4) With the mass of microspheres increasing, there was an increase in the compressive and tension abilities and hot water soluble loss rate, and a decrease in the porosity, mean pore size and water absorption expansion rate.(5) These results indicate that the three-dimensional tissue-engineered scaffold loaded with levofloxacin is constructed successfully by freeze drying and chemical cross-linking method, which holds good sustained-release effect and compressive ability, water absorption expansion rate and hot water soluble loss rate.
引文
[1]Howlader D,Vignesh U,Bhutia DP,et al.Hydroxyapatite collagen scaffold with autologous bone marrow aspirate for mandibular condylar reconstruction.J Craniomaxillofac Surg.2017;45(9):1566-1572.
    [2]Tuukkanen J,Nakamura M.Hydroxyapatite as a Nanomaterial for Advanced Tissue Engineering and Drug Therapy.Curr Pharm Des.2017;23(26):3786-3793.
    [3]Kamalaldin N,Jaafar M,Zubairi SI,et al.Physico-Mechanical Properties of HA/TCP Pellets and Their Three-Dimensional Biological Evaluation In Vitro.Adv Exp Med Biol.2018.doi:10.1007/5584_2017_130.[Epub ahead of print]
    [4]Tohamy KM,Mabrouk M,Soliman IE,et al.Novel alginate/hydroxyethyl cellulose/hydroxyapatite composite scaffold for bone regeneration:In vitro cell viability and proliferation of human mesenchymal stem cells.Int J Biol Macromol.2018;112:448-460.
    [5]Tanaka M,Haniu H,Kamanaka T,et al.Physico-Chemical,In Vitro,and In Vivo Evaluation of a 3D Unidirectional Porous Hydroxyapatite Scaffold for Bone Regeneration.Materials(Basel).2017;10(1).pii:E33.doi:10.3390/ma10010033.
    [6]Tamaddon M,Samizadeh S,Wang L,et al.Intrinsic Osteoinductivity of Porous Titanium Scaffold for Bone Tissue Engineering.Int J Biomater.2017;2017:5093063.
    [7]Huang B,Caetano G,Vyas C,et al.Polymer-Ceramic Composite Scaffolds:The Effect of Hydroxyapatite and beta-tri-Calcium Phosphate.Materials(Basel).2018;11(1).pii:E129.doi:10.3390/ma11010129.
    [8]Meskinfam M,Bertoldi S,Albanese N,et al.Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration.Mater Sci Eng C Mater Biol Appl.2018;82:130-140.
    [9]Zang S,Zhu L,Luo K,et al.Chitosan composite scaffold combined with bone marrow-derived mesenchymal stem cells for bone regeneration:in vitro and in vivo evaluation.Oncotarget.2017;8(67):110890-110903.
    [10]Varoni EM,Vijayakumar S,Canciani E,et al.Chitosan-Based Trilayer Scaffold for Multitissue Periodontal Regeneration.J Dent Res.2017:1335507775.
    [11]Li Y,Zhang Z,Zhang Z.Porous Chitosan/Nano-Hydroxyapatite Composite Scaffolds Incorporating Simvastatin-Loaded PLGAMicrospheres for Bone Repair.Cells Tissues Organs.2018;205(1):20-31.
    [12]Zhou T,Wu J,Liu J,et al.Fabrication and characterization of layered chitosan/silk fibroin/nano-hydroxyapatite scaffolds with designed composition and mechanical properties.Biomed Mater.2015;10(4):45013.
    [13]Iqbal H,Ali M,Zeeshan R,et al.Chitosan/hydroxyapatite(HA)/hydroxypropylmethyl cellulose(HPMC)spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes.Colloids Surf B Biointerfaces.2017;160:553-563.
    [14]Chen BQ,Kankala RK,Chen AZ,et al.Investigation of silk fibroin nanoparticle-decorated poly(l-lactic acid)composite scaffolds for osteoblast growth and differentiation.Int J Nanomedicine.2017;12:1877-1890.
    [15]Oftadeh MO,Bakhshandeh B,Dehghan MM,et al.Sequential application of mineralized electroconductive scaffold and electrical stimulation for efficient osteogenesis.J Biomed Mater Res A.2018;106(5):1200-1210.
    [16]Dhivya S,Keshav NA,Logith KR,et al.Proliferation and differentiation of mesenchymal stem cells on scaffolds containing chitosan,calcium polyphosphate and pigeonite for bone tissue engineering.Cell Prolif.2018;51(1).doi:10.1111/cpr.12408.Epub2017 Nov 21.
    [17]Shahbazarab Z,Teimouri A,Chermahini AN,et al.Fabrication and characterization of nanobiocomposite scaffold of zein/chitosan/nanohydroxyapatite prepared by freeze-drying method for bone tissue engineering.Int J Biol Macromol.2018;108:1017-1027.
    [18]Lu Y,Li M,Li L,et al.High-activity chitosan/nano hydroxyapatite/zoledronic acid scaffolds for simultaneous tumor inhibition,bone repair and infection eradication.Mater Sci Eng CMater Biol Appl.2018;82:225-233.
    [19]Moraes PC,Marques I,Basso FG,et al.Repair of Bone Defects with Chitosan-Collagen Biomembrane and Scaffold Containing Calcium Aluminate Cement.Braz Dent J.2017;28(3):287-295.
    [20]Li J,Wang Q,Gu Y,et al.Production of Composite Scaffold Containing Silk Fibroin,Chitosan,and Gelatin for 3D Cell Culture and Bone Tissue Regeneration.Med Sci Monit.2017;23:5311-5320.
    [21]Kaczmarek B,Sionkowska A,Kozlowska J,et al.New composite materials prepared by calcium phosphate precipitation in chitosan/collagen/hyaluronic acid sponge cross-linked by EDC/NHS.Int J Biol Macromol.2018;107(Pt A):247-253.
    [22]Lu Y,Li L,Zhu Y,et al.Multifunctional Copper-Containing Carboxymethyl Chitosan/Alginate Scaffolds for Eradicating Clinical Bacterial Infection and Promoting Bone Formation.ACSAppl Mater Interfaces.2018;10(1):127-138.
    [23]Ruan SQ,Deng J,Yan L,et al.Composite scaffolds loaded with bone mesenchymal stem cells promote the repair of radial bone defects in rabbit model.Biomed Pharmacother.2018;97:600-606.
    [24]Shalumon KT,Lai GJ,Chen CH,et al.Modulation of Bone-Specific Tissue Regeneration by Incorporating Bone Morphogenetic Protein and Controlling the Shell Thickness of Silk Fibroin/Chitosan/Nanohydroxyapatite Core-Shell Nanofibrous Membranes.ACS Appl Mater Interfaces.2015;7(38):21170-21181.
    [25]Qi X N,Mou Z L,Zhang J,et al.Preparation of chitosan/silk fibroin/hydroxyapatite porous scaffold and its characteristics in comparison to bi-component scaffolds.J Biomed Mater Res A.2014;102(2):366-372.
    [26]Ruan SQ,Yan L,Deng J,et al.Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits.Int Orthop.2017;41(9):1899-1908.
    [27]Ruan SQ,Deng J,Yan L,et al.Composite scaffolds loaded with bone mesenchymal stem cells promote the repair of radial bone defects in rabbit model.Biomed Pharmacother.2018;97:600-606.
    [28]Raina DB,Isaksson H,Teotia AK,et al.Biocomposite macroporous cryogels as potential carrier scaffolds for bone active agents augmenting bone regeneration.J Control Release.2016;235:365-378.
    [29]Ran J,Hu J,Sun G,et al.A novel chitosan-tussah silk fibroin/nano-hydroxyapatite composite bone scaffold platform with tunable mechanical strength in a wide range.Int J Biol Macromol.2016;93(Pt A):87-97.
    [30]Bhuiyan DB,Middleton JC,Tannenbaum R,et al.Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactive polymer scaffolds.Biomed Mater Eng.2017;28(6):671-685.
    [31]A A,Menon D,T B S,et al.Bioinspired Composite Matrix Containing Hydroxyapatite-Silica Core-Shell Nanorods for Bone Tissue Engineering.ACS Appl Mater Interfaces.2017;9(32):26707-26718.
    [32]Hernandez I,Kumar A,Joddar B.A Bioactive Hydrogel and 3DPrinted Polycaprolactone System for Bone Tissue Engineering.Gels.2017;3(3).pii:26.doi:10.3390/gels3030026.Epub 2017 Jul 6.
    [33]David N,Nallaiyan R.Biologically anchored chitosan/gelatin-SrHAP scaffold fabricated on Titanium against chronic osteomyelitis infection.Int J Biol Macromol.2018;110:206-214.
    [34]Chen CK,Chang NJ,Wu YT,et al.Bone Formation Using Cross-Linked Chitosan Scaffolds in Rat Calvarial Defects.Implant Dent.2018;27(1):15-21.
    [35]Stepniewski M,Martynkiewicz J,Gosk J.Chitosan and its composites:Properties for use in bone substitution.Polim Med.2017;47(1):49-53.
    [36]Casagrande S,Tiribuzi R,Cassetti E,et al.Biodegradable composite porous poly(dl-lactide-co-glycolide)scaffold supports mesenchymal stem cell differentiation and calcium phosphate deposition.Artif Cells Nanomed Biotechnol.2017:1-11.
    [37]Garcia-Gonzalez CA,Barros J,Rey-Rico A,et al.Antimicrobial Properties and Osteogenicity of Vancomycin-Loaded Synthetic Scaffolds Obtained by Supercritical Foaming.ACS Appl Mater Interfaces.2018;10(4):3349-3360.
    [38]Lin HY,Chang TW,Peng TK.3D plotted alginate fibers embedded with diclofenac and bone cells coated with chitosan for bone regeneration during inflammation.J Biomed Mater Res A.2018;106(6):1511-1521.
    [39]Sommer MR,Vetsch JR,Leemann J,et al.Silk fibroin scaffolds with inverse opal structure for bone tissue engineering.J Biomed Mater Res B Appl Biomater.2017;105(7):2074-2084.
    [40]Jo YY,Kim SG,Kwon KJ,et al.Silk Fibroin-AlginateHydroxyapatite Composite Particles in Bone Tissue Engineering Applications In Vivo.Int J Mol Sci.2017;18(4).pii:E858.doi:10.3390/ijms18040858.
    [41]Farokhi M,Mottaghitalab F,Samani S,et al.Silk fibroin/hydroxyapatite composites for bone tissue engineering.Biotechnol Adv.2018;36(1):68-91.
    [42]Sangkert S,Kamonmattayakul S,Chai WL,et al.Modified porous scaffolds of silk fibroin with mimicked microenvironment based on decellularized pulp/fibronectin for designed performance biomaterials in maxillofacial bone defect.J Biomed Mater Res A.2017;105(6):1624-1636.
    [43]Bhattacharjee P,Naskar D,Maiti TK,et al.Non-mulberry silk fibroin grafted poly(capital JE,Ukrainian-caprolactone)/nano hydroxyapatite nanofibrous scaffold for dual growth factor delivery to promote bone regeneration.J Colloid Interface Sci.2016;472:16-33.2155
    [44]Mclaren JS,White LJ,Cox HC,et al.A biodegradable antibiotic-impregnated scaffold to prevent osteomyelitis in a contaminated in vivo bone defect model.Eur Cell Mater.2014;27:332-349.
    [45]Lu M,Liao J,Dong J,et al.An effective treatment of experimental osteomyelitis using the antimicrobial titanium/silver-containing nHP66(nano-hydroxyapatite/polyamide-66)nanoscaffold biomaterials.Sci Rep.2016;6:39174.
    [46]Mostafa AA,El-Sayed M,Mahmoud AA,et al.Bioactive/Natural Polymeric Scaffolds Loaded with Ciprofloxacin for Treatment of Osteomyelitis.AAPS Pharm Sci Tech.2017;18(4):1056-1069.
    [47]Zhou J,Zhou XG,Wang JW,et al.Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/beta-tricalcium phosphate composite scaffold.Bone Joint Res.2018;7(1):46-57.
    [48]Pacheco H,Vedantham K,Aniket,et al.Tissue engineering scaffold for sequential release of vancomycin and rhBMP2 to treat bone infections.J Biomed Mater Res A.2014;102(12):4213-4223.
    [49]Dorati R,Detrizio A,Modena T,et al.Biodegradable Scaffolds for Bone Regeneration Combined with Drug-Delivery Systems in Osteomyelitis Therapy.Pharmaceuticals(Basel).2017;10(4).pii:E96.doi:10.3390/ph10040096.
    [50]David N,Nallaiyan R.Biologically anchored chitosan/gelatin-SrHAP scaffold fabricated on Titanium against chronic osteomyelitis infection.Int J Biol Macromol.2018;110:206-214.
    [51]Jr Sanchez CJ,Prieto EM,Krueger CA,et al.Effects of local delivery of D-amino acids from biofilm-dispersive scaffolds on infection in contaminated rat segmental defects.Biomaterials.2013;34(30):7533-7543.
    [52]Cao ZD,Jiang DM,Yan L,et al.Biosafety of the Novel Vancomycin-loaded Bone-like Hydroxyapatite/Poly-amino Acid Bony Scaffold.Chin Med J(Engl).2016;129(2):194-199.
    [53]Hassani B N,Mottaghitalab F,Eslami M,et al.Sustainable Release of Vancomycin from Silk Fibroin Nanoparticles for Treating Severe Bone Infection in Rat Tibia Osteomyelitis Model.ACS Appl Mater Interfaces.2017;9(6):5128-5138.
    [54]Hess U,Hill S,Treccani L,et al.A mild one-pot process for synthesising hydroxyapatite/biomolecule bone scaffolds for sustained and controlled antibiotic release.Biomed Mater.2015;10(1):15013.
    [55]Huang TY,Su WT,Chen PH.Comparing the Effects of Chitosan Scaffolds Containing Various Divalent Metal Phosphates on Osteogenic Differentiation of Stem Cells from Human Exfoliated Deciduous Teeth.Biol Trace Elem Res.2018;185(2):316-326.
    [56]Pipattanawarothai A,Suksai C,Srisook K,et al.Non-cytotoxic hybrid bioscaffolds of chitosan-silica:Sol-gel synthesis,characterization and proposed application.Carbohydr Polym.2017;178:190-199.
    [57]Drampalos E,Mohammad HR,Kosmidis C,et al.Single stage treatment of diabetic calcaneal osteomyelitis with an absorbable gentamicin-loaded calcium sulphate/hydroxyapatite biocomposite:The Silo technique.Foot(Edinb).2017;34:40-44.
    [58]Posadowska U,Brzychczy-Wloch M,Pamula E.Gentamicin loaded PLGA nanoparticles as local drug delivery system for the osteomyelitis treatment.Acta Bioeng Biomech.2015;17(3):41-48.
    [59]Rumian L,Tiainen H,Cibor U,et al.Ceramic scaffolds enriched with gentamicin loaded poly(lactide-co-glycolide)microparticles for prevention and treatment of bone tissue infections.Mater Sci Eng C Mater Biol Appl.2016;69:856-864.
    [60]Wang Q,Chen C,Liu W,et al.Levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold for the treatment of chronic osteomyelitis with bone defects.Sci Rep.2017;7:41808.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700