用户名: 密码: 验证码:
Identification of major QTL for seed number per pod on chromosome A05 of tetraploid peanut(Arachis hypogaea L.)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Identification of major QTL for seed number per pod on chromosome A05 of tetraploid peanut(Arachis hypogaea L.)
  • 作者:Yuning ; Chen ; Zhihui ; Wang ; Xiaoping ; Ren ; Li ; Huang ; Jianbin ; Guo ; Jiaojiao ; Zhao ; Xiaojing ; Zhou ; Liying ; Yan ; Huaiyong ; Luo ; Nian ; Liu ; Weigang ; Chen ; Liyun ; Wan ; Yong ; Lei ; Boshou ; Liao ; Dongxin ; Huai ; Huifang ; Jiang
  • 英文作者:Yuning Chen;Zhihui Wang;Xiaoping Ren;Li Huang;Jianbin Guo;Jiaojiao Zhao;Xiaojing Zhou;Liying Yan;Huaiyong Luo;Nian Liu;Weigang Chen;Liyun Wan;Yong Lei;Boshou Liao;Dongxin Huai;Huifang Jiang;Oil Crop Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops,Ministry of Agriculture and Rural Affairs;
  • 英文关键词:Peanut;;Number;;Pod;;Seed;;QTL
  • 中文刊名:CROP
  • 英文刊名:作物学报(英文版)
  • 机构:Oil Crop Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops,Ministry of Agriculture and Rural Affairs;
  • 出版日期:2019-04-15
  • 出版单位:The Crop Journal
  • 年:2019
  • 期:v.7
  • 基金:supported by the National Natural Science Foundation of China(31271764,31371662,31471534,31601340,31461143022);; the China's Agricultural Research System(CARS-14);; the National Key Technology R&D Program of China(2013BAD01B03);; the National Infrastructure for Crop Germplasm Resources(NICGR2017-036)
  • 语种:英文;
  • 页:CROP201902012
  • 页数:11
  • CN:02
  • ISSN:10-1112/S
  • 分类号:114-124
摘要
The inheritance of pod-and seed-number traits(PSNT) in peanut(Arachis hypogaea L.) is poorly understood. In the present study, a recombinant inbred line(RIL) population of 188 lines was used to map quantitative trait loci(QTL) for number of seeds per pod(NSP),number of pods per plant(NPP), and numbers of one-, two-, and three-seeded pods per plant(N1 PP, N2 PP, and N3 PP) in four environments. A total of 28 consensus QTL and 14 single QTL were identified, including 11 major and stable QTL. Four major and stable QTL including qN3 PPA5.2, q N3 PPA5.4, qN3 PPA5.5, and qN3 PPA5.7 each explained 12.3%–33.0% of phenotype variation. By use of another integrated linkage map for the A5 group(hereafter referred to as INT A5 group), QTL for PSNT were located in seven intervals of 0.73–9.68 Mb in length on chromosome A05, and candidate genes underlying N3 PP were suggested. These findings shed light on the genetic basis of PSNT. Major QTL for N3 PP could be used as candidates for further positional cloning.
        The inheritance of pod-and seed-number traits(PSNT) in peanut(Arachis hypogaea L.) is poorly understood. In the present study, a recombinant inbred line(RIL) population of 188 lines was used to map quantitative trait loci(QTL) for number of seeds per pod(NSP),number of pods per plant(NPP), and numbers of one-, two-, and three-seeded pods per plant(N1 PP, N2 PP, and N3 PP) in four environments. A total of 28 consensus QTL and 14 single QTL were identified, including 11 major and stable QTL. Four major and stable QTL including qN3 PPA5.2, q N3 PPA5.4, qN3 PPA5.5, and qN3 PPA5.7 each explained 12.3%–33.0% of phenotype variation. By use of another integrated linkage map for the A5 group(hereafter referred to as INT A5 group), QTL for PSNT were located in seven intervals of 0.73–9.68 Mb in length on chromosome A05, and candidate genes underlying N3 PP were suggested. These findings shed light on the genetic basis of PSNT. Major QTL for N3 PP could be used as candidates for further positional cloning.
引文
[1]D.J.Bertioli,S.B.Cannon,L.Froenicke,G.Huang,A.D.Farmer,E.K.Cannon,X.Liu,D.Gao,J.Clevenger,S.Dash,L.Ren,M.C.Moretzsohn,K.Shirasawa,W.Huang,B.Vidigal,B.Abernathy,Y.Chu,C.E.Niederhuth,P.Umale,A.C.Araújo,A.Kozik,K.D.Kim,M.D.Burow,R.K.Varshney,X.Wang,X.Zhang,N.Barkley,P.M.Guimar?es,S.Isobe,B.Guo,B.Liao,H.T.Stalker,R.J.Schmitz,B.E.Scheffler,S.C.Leal-Bertioli,X.Xun,S.A.Jackson,R.Michelmore,P.Ozias-Akins,The genome sequences of Arachis duranensis and Arachis ipaensis,the diploid ancestors of cultivated peanut,Nat.Genet.48(2016)438-446.
    [2]R.K.Varshney,M.K.Pandey,P.Janila,S.N.Nigam,H.Sudini,M.V.Gowda,M.Sriswathi,T.Radhakrishnan,S.S.Manohar,P.Nagesh,Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut(Arachis hypogaea L.),Theor.Appl.Genet.127(2014)1771-1781.
    [3]H.Luo,X.Ren,Z.Li,Z.Xu,X.Li,L.Huang,X.Zhou,Y.Chen,W.Chen,Y.Lei,B.Liao,M.K.Pandey,R.K.Varshney,B.Guo,X.Jiang,F.Liu,H.Jiang,Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A05 in cultivated peanut(Arachis hypogaea L.),BMC Genomics 18(2017)58.
    [4]M.K.Faye,F.Pandey,A.Hamidou,O.Rathore,V.Ndoye,R.K.Varshney Vadez,Identification of quantitative trait loci foryield and yield related traits in groundnut(Arachis hypogaea L.)under different water regimes in Niger and Senegal,Euphytica 206(2015)631-647.
    [5]M.Gomez Selvaraj,M.Narayana,A.M.Schubert,J.L.Ayers,M.R.Baring,M.D.Burow,Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis,Electron.J.Biotechnol.1(2009)3-4.
    [6]D.Fonceka,H.A.Tossim,R.Rivallan,H.Vignes,I.Faye,O.Ndoye,M.C.Moretzsohn,D.J.Bertioli,J.C.Glaszmann,B.Courtois,J.F.Rami,Fostered and left behind alleles in peanut:interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding,BMC Plant Biol.12(2012)26.
    [7]K.Shirasawa,P.Koilkonda,K.Aoki,H.Hirakawa,S.Tabata,M.Watanabe,M.Hasegawa,H.Kiyoshima,S.Suzuki,C.Kuwata,Y.Naito,T.Kuboyama,A.Nakaya,S.Sasamoto,A.Watanabe,M.Kato,K.Kawashima,Y.Kishida,M.Kohara,A.Kurabayashi,C.Takahashi,H.Tsuruoka,T.Wada,S.Isobe,In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut,BMC Plant Biol.12(2012)80.
    [8]H.Jiang,L.Huang,X.Ren,Y.Chen,X.Zhou,Y.Xia,J.Huang,Y.Lei,L.Yan,L.Wan,B.Liao,Diversity characterization and association analysis of agronomic traits in a Chinese peanut(Arachis hypogaea L.)mini-core collection,J.Integr.Plant Biol.56(2014)159-169.
    [9]L.Huang,H.He,W.Chen,X.Ren,Y.Chen,X.Zhou,Y.Xia,X.Wang,X.Jiang,B.Liao,H.Jiang,Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut(Arachis hypogaea L.),Theor.Appl.Genet.128(2015)1103-1115.
    [10]W.Chen,Y.Jiao,L.Cheng,L.Huang,B.Liao,M.Tang,X.Ren,X.Zhou,Y.Chen,H.Jiang,Quantitative trait locus analysis for pod-and kernel-related traits in the cultivated peanut(Arachis hypogaea L.),BMC Genet.17(2016)25.
    [11]Y.Chen,X.Ren,Y.Zheng,X.Zhou,L.Huang,L.Yan,Y.Jiao,W.Chen,S.Huang,L.Wan,Y.Lei,B.Liao,D.Huai,W.Wei,H.Jiang,Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG6375 of peanut(Arachis hypogaea L.),Mol.Breed.37(2017)17.
    [12]H.Luo,J.Guo,X.Ren,W.Chen,L.Huang,X.Zhou,Y.Chen,N.Liu,F.Xiong,Y.Lei,B.Liao,H.Jiang,Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut(Arachis hypogaea L.),Theor.Appl.Genet.131(2018)267-282.
    [13]W.D.Branch,Inheritance of a one-seeded pod trait in peanut,J.Hered.99(2008)221-222.
    [14]C.R.Seshadri,Groundnut,Indian Central Oilseeds Committee,Hyderabad,India,1962.
    [15]V.R.K.Badami,Arachis hypogaea(The Groundnut),Ph.D.Dissertation University of Cambridge Library,United Kingdom,1928.
    [16]C.Balaiah,P.Reddy,M.Reddi,Genic analysis in groundnut:I.Inheritance studies on 18 morphological characters in crosses with Gujarat narrow leaf mutant,Proc.Indiana Acad.Sci.85(1977)340-350.
    [17]N.Jeong,J.K.Moon,H.S.Kim,C.G.Kim,S.C.Jeong,Fine genetic mapping of the genomic region controlling leafet shape and number of seeds per pod in the soybean,Theor.Appl.Genet.122(2011)865-874.
    [18]N.Jeong,S.J.Suh,M.H.Kim,S.Lee,J.K.Moon,H.S.Kim,S.C.Jeong,Ln is a key regulator of leaflet shape and number of seeds per pod in soybean,Plant Cell 24(2012)4807-4818.
    [19]X.Wang,Y.Li,H.Zhang,G.Sun,W.Zhang,L.Qiu,Evolution and association analysis of GmCYP78A10 gene with seed size/weight and pod number in soybean,Mol.Biol.Rep.42(2015)489-496.
    [20]S.Das,M.Singh,R.Srivastava,D.Bajaj,M.S.Saxena,J.C.Rana,K.C.Bansal,A.K.Tyagi,S.K.Parida,mQTL-seq delineates functionally relevant candidate gene harbouring a major QTLregulating pod number in chickpea,DNA Res.23(2016)53-65.
    [21]S.Nemli,T.Asciogul,H.Kaya,A.Kahraman,D.E?iyok,B.Tanyolac,Association mapping for five agronomic traits in the common bean(Phaseolus vulgaris L.),J.Sci.Food Agric.94(2014)3141-3151.
    [22]X.Li,Y.Yang,A novel perspective on seed yield of broad bean(Vicia faba L.):differences resulting from pod characteristics,Sci.Rep.4(2014)6859.
    [23]L.Palomeque,L.J.Liu,W.Li,B.Hedges,E.R.Cober,I.Rajcan,QTL in mega-environments:II.Agronomic trait QTL colocalized with seed yield QTL detected in a population derived from a cross of high-yielding adapted×high-yielding exotic soybean lines,Theor.Appl.Genet.119(2009)429-436.
    [24]R.Srivastava,M.Singh,D.Bajaj,S.K.Parida,A high-resolution InDel(Insertion-Deletion)markers-anchored consensus genetic map identifies major QTLs governing pod number and seed yield in chickpea,Front.Plant Sci.167(2016)1362.
    [25]C.H.Galeano,A.J.Cortés,A.C.Fernández,á.Soler,N.FrancoHerrera,G.Makunde,J.Vanderleyden,M.W.Blair,Genebased single nucleotide polymorphism markers for genetic and association mapping in common bean,BMC Genet.13(2012)48.
    [26]Z.Liu,D.Yao,J.Zhang,Z.Li,J.Ma,S.Liu,J.Qu,S.Guan,D.Wang,L.Pan,D.Wang,P.Wang,Identification of genes associated with the increased number of four-seed pods in soybean(Glycine max L.)using transcriptome analysis,Genet.Mol.Res.14(2015)18895-18912.
    [27]Y.Yang,J.Shi,X.Wang,G.Liu,H.Wang,Genetic architecture and mechanism of seed number per pod in rapeseed:elucidated through linkage and near-isogenic line analysis,Sci.Rep.6(2016)24124.
    [28]J.Shi,J.Zhan,Y.Yang,J.Ye,S.Huang,R.Li,X.Wang,G.Liu,H.Wang,Linkage and regional association analysis reveal two new tightly linked major-QTLs for pod number and seed number per pod in rapeseed(Brassica napus L.),Sci.Rep.5(2015)14481.
    [29]Y.Wen,J.Zhu,Multivariable conditional analysis for complex trait and its components,Acta Genet.Sin.32(2005)289-296.
    [30]X.Zhou,Y.Xia,J.Liao,K.Liu,Q.Li,Y.Dong,X.Ren,Y.Chen,L.Huang,B.Liao,Y.Lei,L.Yan,H.Jiang,Quantitative trait locus analysis of late leaf spot resistance and plant-typerelated traits in cultivated peanut(Arachis hypogaea L.)under multienvironments,PLoS One 11(2016),e0166873..
    [31]X.Chen,H.Li,M.K.Pandey,Q.Yang,X.Wang,V.Garg,H.Li,X.Chi,D.Doddamani,Y.Hong,H.Upadhyaya,H.Guo,A.W.Khan,F.Zhu,X.Zhang,L.Pan,G.J.Pierce,G.Zhou,K.A.Krishnamohan,M.Chen,N.Zhong,G.Agarwal,S.Li,A.Chitikineni,G.Zhang,S.Sharma,N.Chen,H.Liu,P.Janila,S.Li,M.Wang,T.Wang,J.Sun,X.Li,C.Li,M.Wang,L.Yu,S.Wen,S.Singh,Z.Yang,J.Zhao,C.Zhang,Y.Yu,J.Bi,X.Zhang,Z.Liu,A.Paterson,S.Wang,X.Liang,R.K.Varshney,S.Yu,Draft genome of the peanut A-genome progenitor(Arachis duranensis)provides insights into geocarpy,oil biosynthesis,and allergens,Proc.Natl.Acad.Sci.U.S.A.113(2016)6785-6790.
    [32]X.Wu,S.Blake,D.A.Sleper,J.G.Shannon,P.Cregan,H.T.Nguyen,QTL,additive and epistatic effects for SCN resistance in PI 437654,Theor.Appl.Genet.118(2009)1093-1105.
    [33]L.Huang,X.Ren,B.Wu,X.Li,W.Chen,X.Zhou,Y.Chen,M.K.Pandey,Y.Jiao,H.Luo,Y.Lei,R.K.Varshney,B.Liao,H.Jiang,Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut(Arachis hypogaea L.),Sci.Rep.20(2016)39478.
    [34]S.Wang,C.J.Basten,Z.Zeng,Windows QTL Cartographer 2.5,Department of Statistics,North Carolina State University,Raleigh,NC,USAhttps://brcwebportal.cos.ncsu.edu/qtlcart/WQTLCart.htm 2012.
    [35]Arcade,A.Labourdette,M.Falque,B.Mangin,F.Chardon,A.Charcosset,J.Joets,BioMercator:integrating genetic maps and QTL towards discovery of candidate genes,Bioinformatics 20(2004)2324-2326.
    [36]Goffinet,S.Gerber,Quantitative trait loci:a meta-analysis,Genetics 155(2000)463-473.
    [37]J.Shi,R.Li,D.Qiu,C.Jiang,Y.Long,C.Morgan,I.Bancroft,J.Zhao,J.Meng,Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus,Genetics 182(2009)851-861.
    [38]R.E.Voorips,MapChart:software for the graphical presentation of linkage map and QTLs,J.Hered.93(2002)77-78.
    [39]S.Li,L.Chen,L.Zhang,X.Li,Y.Liu,Z.Wu,F.Dong,L.Wan,K.Liu,D.Hong,G.Yang,BnaC9.SMG7b functions as a positive regulator of number of seeds per silique in rapeseed(Brassica napus L.)by regulating the formation of functional female gametophytes,Plant Physiol.169(2015)2744-2760.
    [40]J.Liu,W.Hua,Z.Hu,H.Yang,L.Zhang,R.Li,L.Deng,X.Sun,X.Wang,H.Wang,Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed,Proc.Natl.Acad.Sci.U.S.A.112(2015)5123-5132.
    [41]H.Yuan,S.Fan,J.Huang,S.Zhan,S.Wang,P.Gao,W.Chen,B.Tu,B.Ma,Y.Wang,P.Qin,S.Li,08SG2/OsBAK1 regulates grain size and number,and functions differently in Indica and Japonica backgrounds in rice,Rice 10(2017)25.
    [42]N.Fang,R.Xu,L.Huang,B.Zhang,P.Duan,N.Li,Y.Luo,Y.Li,SMALL GRAIN 11 controls grain size,grain number and grain yield in rice,Rice 9(2016)64.
    [43]Y.Wu,Y.Wang,X.Mi,J.Shan,X.Li,J.Xu,H.Lin,The QTLGNP1 encodes GA20ox1,which increases grain number and yield by increasing cytokinin activity in rice panicle meristems,PLoS Genet.12(2016),e1006386..
    [44]X.Huang,Q.Qian,Z.Liu,H.Sun,S.He,D.Luo,G.Xia,C.Chu,J.Li,X.Fu,Natural variation at the DEP1 locus enhances grain yield in rice,Nat.Genet.41(2009)494-497.
    [45]M.Komatsu,M.Maekawa,K.Shimamoto,J.Kyozuka,The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis branch and spikelet development,Dev.Biol.231(2001)364-373.
    [46]K.Ikeda,N.Nagasawa,Y.Nagato,ABERRANT PANICLEORGANIZATION 1 temporally regulates meristem identity in rice,Dev.Biol.282(2005)349-360.
    [47]Y.Zhou,Y.Tao,J.Zhu,J.Miao,J.Liu,Y.Liu,C.Yi,Z.Yang,Z.Gong,G.Liang,GNS4,a novel allele of DWARF11,regulates grain number and grain size in a high-yield rice variety,Rice10(2017)34.
    [48]Z.Yang,D.Xin,C.Liu,H.Jiang,X.Han,Y.Sun,Z.Qi,G.Hu,Q.Chen,Identification of QTLs for seed and pod traits in soybean and analysis for additive effects and epistatic effects of QTLs among multiple environments,Mol.Gen.Genomics.288(2013)651-667.
    [49]Y.Fu,D.Wei,H.Dong,Y.He,Y.Cui,J.Mei,H.Wan,J.Li,R.Snowdon,W.Friedt,X.Li,W.Qian,Comparative quantitative trait loci for silique length and seed weight in Brassica napus,Sci.Rep.5(2015)14407.
    [50]D.Zhang,H.Cheng,H.Wang,H.Zhang,C.Liu,D.Yu,Identification of genomic regions determining flower and pod numbers development in soybean(Glycine max L.),J.Genet.Genomics 37(2010)545-556.
    [51]K.M.Gardner,R.G.Latta,Shared quantitative trait loci underlying the genetic correlation between continuous traits,Mol.Ecol.16(2007)4195-4209.
    [52]H.Jiang,X.Ren,B.Liao,J.Huang,Y.Lei,B.Chen,C.C.Holbrook,H.D.Upadhyaya,Peanut core collection established in China and compared with icrisat mini core collection,Acta Agron.Sin.34(2008)25-30(in Chinese with English abstract).
    [53]H.Jiang,X.Ren,X.Zhang,J.Huang,S.Wang,Y.Lei,L.Yan,B.Liao,Genetic diversity of peanut mini core collection detected by SSR markers,Chin.J.Oil Crop Sci.32(2010)472-478(in Chinese with English abstract).
    [54]T.Asakura,T.Tamura,K.Terauchi,T.Narikawa,K.Yagasaki,Y.Ishimaru,K.Abe,Global gene expression profiles in developing soybean seeds,Plant Physiol.Biochem.52(2012)147-153.
    [55]Bleckmann,S.Alter,T.Dresselhaus,The beginning of a seed:regulatory mechanisms of double fertilization,Front.Plant Sci.5(2014)452.
    [56]N.Sreenivasulu,U.Wobus,Seed-development programs:a systems biology-based comparison between dicots and monocots,Annu.Rev.Plant Biol.64(2013)189-217.
    [57]Y.Xing,Q.Zhang,Genetic and molecular bases of rice yield,Annu.Rev.Plant Biol.61(2010)421-442.
    [58]J.I.Reyes-Olalde,V.M.Zuniga-Mayo,R.A.Chávez Montes,N.Marsch-Martinez,S.Folter,Inside the gynoecium:at the carpel margin,Trends Plant Sci.18(2013)644-655.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700