用户名: 密码: 验证码:
MoS_2@ZnO异质结纳米材料的制备及光催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Preparation and Photocatalytic Properties of MoS_2@ZnO Heterojunction Nanomaterials
  • 作者:张辉 ; 宋海燕 ; 阮舒红 ; 黄雯倩 ; 高志红
  • 英文作者:ZHANG Hui;SONG Haiyan;RUAN Shuhong;HUANG Wenqian;GAO Zhihong;School of Chemistry and Environment,South China Normal University;Research Resources Center,South China Normal University;
  • 关键词:MoS2@ZnO ; 异质结 ; 亚甲基蓝 ; 光催化
  • 英文关键词:MoS2@ZnO;;heterojunction;;methylene blue;;photocatalysis
  • 中文刊名:HNSF
  • 英文刊名:Journal of South China Normal University(Natural Science Edition)
  • 机构:华南师范大学化学与环境学院;华南师范大学实验中心;
  • 出版日期:2019-04-03 13:39
  • 出版单位:华南师范大学学报(自然科学版)
  • 年:2019
  • 期:v.51
  • 基金:国家自然科学基金项目(40803038);; 华南师范大学研究生创新计划项目;华南师范大学大学生创新创业训练项目
  • 语种:中文;
  • 页:HNSF201901007
  • 页数:7
  • CN:01
  • ISSN:44-1138/N
  • 分类号:40-46
摘要
通过超声法制备了形貌均一的MoS_2@ZnO异质结光催化材料.采用X射线粉末衍射(XRD)、扫描电镜(SEM)、光致发光光谱(PL)、光电流密度测试等方法对样品的形貌、结构及光催化性能进行了研究.扫描电镜结果表明,MoS_2@ZnO异质结复合材料由直径约20~40 nm的ZnO纳米球包裹的MoS_2纳米片组成.光致发光光谱、光电流密度测试结果表明,MoS_2的质量分数为1.0%的MoS_2@ZnO异质结材料(最佳样品)能更有效地分离光生电子和空穴对,降低复合几率,提高其光催化效率.以初始质量浓度为15 mg/L的亚甲基蓝(MB)为模拟废水,研究纯ZnO纳米球和MoS_2@ZnO系列异质结复合材料在250 W Xe灯下的光催化活性,结果表明最佳样品MoS_2@ZnO异质结材料对亚甲基蓝的光催化降解效率相比纯ZnO纳米球提高了15.2%.并且经3次循环实验后,该材料的光催化性能基本不受影响,说明了其稳定性强.
        MoS_2@ ZnO heterojunction nanomaterials were synthesized with the ultrasonic method. The morphologies,structures and photocatalytic properties of MoS_2@ ZnO heterojunction were characterized with X-ray diffraction( XRD),scanning electron microscopy( SEM),photoluminescence spectra( PL),and photocurrent density measurement. The SEM results show that the MoS_2@ ZnO heterojunction composite was composed of ZnO nanospheres about 20 ~ 40 nm in diameter wrapped in MoS_2 nanosheets. The results of PL spectra and photocurrent density measurement show that the heterojunction between nano material MoS_2@ ZnO with MoS_2 mass fraction of 1.0%( the best sample) can effectively separate photogenerated electrons and holes,reduce their recombination probability,and improve their photocatalytic activity. The photocatalytic activity of pure ZnO and that of MoS2@ ZnO heterojunction nanomaterials were evaluated with the degradation of Methylene blue( MB)( 15 mg/L) solution under 250 W Xe lamp irradiation,and the results show that photocatalytic degradation of MB with the best sample is 15.2% more efficient than that with pure ZnO. Three repeated experiments for the photodegradation of MB were conducted to study the photostability of the best nanomaterial,and the photocatalytic activity of this material exhibited no significant change after the three cycles,suggesting that it has excellent photostability.
引文
[1] FUJISHIMA A,HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238:37-38.
    [2] WANG Z Y,LIU S Y,ZHANG J N,et al. Photocatalytic active mesoporous carbon/Zn O hybfrom block copolymer tethered Zn O nanocrystals[J]. Langmuir,2017,33:12276-12284.
    [3] JI B,ZHANG J X,ZHANG C,et al. Vertically-aligned Zn O@Zn S nanorod chip with improved photocatalytic activity for antibiotics degradation[J]. ACS Applied Nano Materials,2018,1(2):793-799.
    [4] THIRUMALAI K,SHANTHI M,SWAMINATHAN M.Hydrothermal fabrication of natural sun light active Dy2WO6doped Zn O and its enhanced photoelectrocatalytic activity and self-cleaning properties[J]. RSC Advances,2017,7:7509-7518.
    [5] GAVADE N L,BABAR S B,KADAM A N,et al. Fabrication of M@CuxO/Zn O(M=Ag,Au)heterostructured nanocomposite with enhanced photocatalytic performance under sunlight[J]. Industrial&Engineering Chemistry Research,2017,56:14489-14501.
    [6] HSU C L,LIU Y H,KAI W L,et al.Tunable UV-and visible-light photoresponse based on p-Zn O nanostructures/n-Zn O/glass peppered with Au nanoparticles[J].ACS Applied Materials&Interfaces,2017,9:14935-14944.
    [7] YAN B X,WAGN Y C,JIANG X Y,et al. Flexible photocatalytic composite film of Zn O-microrods/polypyrrole[J].ACS Applied Materials&Interfaces,2017,9:29113-29119.
    [8] PRUNA A,SHAO Q,KAMRUZZAMAN M,et al. Effect of Zn O core electrodeposition conditions on electrochemical and photocatalytic properties of polypyrrole-graphene oxide shelled nanoarrays[J]. Applied Surface Science,2017,392:801-809.
    [9] CHO S,JANG J W,KIM J,et al. Three-dimensional type II Zn O/Zn Se heterostructures and their visible light photocatalytic activities[J]. Langmuir,2011,27:10243-10250.
    [10]王熙,董海太,石思琦,等. Cu2O/(r GO-Ti O2)复合薄膜的制备及其光催化产氢性能[J].华南师范大学学报(自然科学版),2018,50(4):37-43.WANG X,DONG H T,SHI S Q,et al. Fabrication of a Cu2O/(r GO-Ti O2)composite film for efficient photocatalytic hydrogen production[J]. Journal of South China Normal University(Natural Science Edition),2018,50(4):37-43.
    [11] YAN W P,WANG D J,CHEN L P,et al. Properties and photoelectrocatalytic activity of In2O3-sensitized Zn O nanorod array[J]. Acta Physico-Chimica Sinica,2013,29(5):1021-1027.
    [12] MA D D,SHI J W,ZOU Y J,et al. Highly efficient photocatalyst based on a Cd S quantum dots/Zn O nanosheets0D/2D heterojunction for hydrogen evolution from water splitting[J]. ACS Applied Materials&Interfaces,2017,9:25377-25386.
    [13] KHMCHANDANI S,KUNDU S,PATRA A,et al. Band gap tuning of Zn O/In2S3core/shell nanorod arrays for enhanced visible-light-driven photocatalysis[J]. The Journal of Physical Chemistry C,2013,117:5558-5567.
    [14] YU Z J,KUMAR M R,CHU Y,et al. Photocatalytic decomposition of Rh B by newly designed and highly effective CF@Zn O/Cd S hierarchical heterostructures[J]. ACS Sustainable Chemistry&Engineering,2018,6:155-164.
    [15] CONG Y Q,GE Y H,ZHANG T T,et al. Fabrication of Zscheme Fe2O3-Mo S2-Cu2O ternary nanofilm with significantly enhanced photoelectrocatalytic performance[J]. Industrial&Engineering Chemistry Research,2018,57(3):881-890.
    [16] YANGT,CUI Y N,CHEN M J,et al. Uniform and vertically oriented Zn O nanosheets Based on thin layered MoS2:Synthesis and high-sensing ability[J]. ACS Sustainable Chemistry&Engineering,2017,5:1332-1338.
    [17] CHAI B,XU M Q,YAN J T,et al. Remarkably enhanced photocatalytic hydrogen evolution over MoS2nanosheets loaded on uniform Cd S nanospheres[J]. Applied Surface Science,2018,430:523-530.
    [18]吕红金,江萍,刘宇珊,等.不同形貌纳米Zn O的合成及其光催化性能研究[J].功能材料,2010,41(2):292-295.LH J,JINAG P,LIU Y S,et al. Synthesis of different morphologies of nano-Zn O and its photocatalytic properties[J]. Functional Materials,2010,41(2):292-295.
    [19] TIAN N,LI Z,XU D,et al. Utilization of MoS2nanosheets to enhance the photocatalytic activity of Zn O for the aerobic oxidation of benzyl halids under visible light[J]. Industrial&Engineering Chemistry Research,2016,55:8726-8732.
    [20] XU P S,SUN Y M,SHI C S,et al. Electronic structure of Zn O and its defected[J]. Science in China:Series A,2001,44(9):1174-1181.
    [21]孙兆奇,徐凯,杨蕾,等.沉积电位对Zn O薄膜结构及光电性能的影响[J].安徽大学学报(自然科学版),2013,37(2):45-50.SUN Z Q,XU K,YANG L,et al. Effect of deposition potential on the structure and photoelectric properties of Zn O thin films[J]. Journal of Anhui University(Natural Science Edition),2013,37(2):45-50.
    [22] WANG M,CHE Y,NIU C,et al. Effective visible lightactive boron and europium co-doped Bi VO4synthesized by sol-gel method for photodegradion of methyl orange[J]. Journal of Hazardous Materials,2013,262:447-455.
    [23] HOFFMANN M R,MARTIN S T,CHOI W Y,et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews,1995,95:69-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700