用户名: 密码: 验证码:
地幔内板片俯冲运动模式及其大地构造意义——俯冲的屏障与穿越机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Subduction patterns within mantle and its tectonic significance——Subduction barrier and crossing mechanism
  • 作者:李江海 ; 刘仲兰
  • 英文作者:LI Jianghai;LIU Zhonglan;Key Laboratory of Orogenic Belts and Crustal Evolution,Ministry of Education,School of Earth and Space Sciences,Peking University;Institute of Oil and Gas,Peking University;Center for Marine Environmental Sciences ( MARUM);
  • 关键词:板片俯冲 ; 地幔过渡带 ; 板块墓地 ; 下地幔 ; 超级地幔柱 ; 地幔对流
  • 英文关键词:plate subduction;;mantle transition zone;;plate grave;;lower mantle;;super mantle plume;;mantle convection
  • 中文刊名:DZLP
  • 英文刊名:Geological Review
  • 机构:造山带与地壳演化教育部重点实验室北京大学地球与空间科学学院;北京大学石油与天然气研究中心;德国海洋与环境研究中心(MARUM);
  • 出版日期:2019-03-15
  • 出版单位:地质论评
  • 年:2019
  • 期:v.65
  • 基金:国家重点研发计划课题(编号:2016YFC0503301);; 国家科技重大专项项目(编号:2016ZX05033001-007)的成果~~
  • 语种:中文;
  • 页:DZLP201902018
  • 页数:11
  • CN:02
  • ISSN:11-1952/P
  • 分类号:189-199
摘要
地震层析成像揭示了地幔内存在俯冲板片的重要证据,它们涉及多种几何形态和运动方式,地幔过渡带为其下沉的重要屏障,俯冲板片在这里发生停滞、变形和岩石圈物质积累。板片在个别地区可以俯冲到地核—地幔边界,堆积形成板块墓地,造成D″层物质组成和热学的不均一性。高温高压实验以及流变学计算模拟,对地幔组成及其物性提供了新的制约,板片俯冲地幔过程中,涉及矿物相变、黏度、密度、力学强度等因素的制约,地幔过渡带为俯冲重要屏障和相变界面。围绕板片俯冲的研究,提出地幔整体对流的新模式,板块墓地与超级地幔柱具有成因联系,成为全球地幔对流的重要环节,有待深入研究。板片俯冲是浅表板块构造与深部超级地幔柱的联系纽带和重要驱动力。
        Seismic tomography reveals important evidences of subduction slab within the mantle, which involves a variety of geometries and modes of motion. The mantle transition zone is an important barrier to subsidence, where subduction slabs stagnate, deform and lithosphere material accumulation. Plate in some areas can be subducted to the core—mantle boundary, the accumulation of the formation of plate cemetery, resulting in D'' layer material composition and thermal heterogeneity. High-temperature and high-pressure experiments and rheological calculation simulation provide new constraints on the composition and physical properties of the mantle. During the subduction of the mantle, plate mineralization involves the constraints of mineral phase transitions, viscosity, density, and mechanical strength of the carbendazim, Mantle transition zone is an important interface of phase change. Based on the study of plate subduction, a new mode of global convection of the mantle is proposed. The plate grave has a causal relationship with the super mantle plume and has become an important link in global mantle convection and needs further study. Plate subduction is the connection between the superficial plate tectonics and deep super mantle plumes and an important driving force.
引文
傅容珊, 冷伟,常筱华. 2005. 地幔对流与深部物质运移研究的新进展. 地球物理学进展, 20(1): 170~179.
    和锐, 杨建思, 张翼, 2007. 地震层析成像方法综述. CT理论与应用研究, 16(1): 35~48.
    毛竹, 李新阳. 2016. 水对地幔矿物弹性性质的影响及其地球物理意义. 中国科学:地球科学, 46(4): 411.
    周晓亚, 马麦宁, 徐志双. 2014. 地幔过渡带顶面低速层的研究进展. 地球物理学进展, (4): 1615~1625.
    Agrusta R, Goes S and Hunen J V. 2017. Subducting-slab transition-zone interaction: Stagnation, penetration and mode switches. Earth and Planetary Science Letters, 464: 10~23.
    Ballmer M D, Schmerr N C, Nakagawa T and Ritsema J. 2015. Compositional mantle layering revealed by slab stagnation at ~1000-km depth. Science Advances, 1(11): e1500815~e1500815.
    Bercovici D, and Karato S.2003. Whole-mantle convection and the transition-zone water filter. Nature, 425(6953): 39.
    Billen M I. 2010. Slab dynamics in the transition zone. Physics of the Earth & Planetary Interiors, 183(1~2): 296~308.
    Burke K, Steinberger B, Torsvik T H and Smethurst M A. 2008. Plume generation zones at the margins of large low shear velocity provinces on the core—mantle boundary. Earth & Planetary Science Letters, 265(1~2): 49~60.
    Chen Jiuhua. 2016. Geochemistry: Lower-mantle materials under pressure. Science, 351(6269): 122.
    Chen Wangping and Brudzinski M R. 2001. Evidence for a large-scale remnant of subducted lithosphere beneath Fiji. Science, 292(5526): 2475.
    Condie K C. 2001. Mantle Plumes and their Record in Earth History. Cambridge: Cambridge University Press.
    Fu Rongshan, Leng Wei, Chang Xiaohua. 2005&. Advancements in the study of mantle convection and the material movements in the deep Earth interior. Progress In Geophysics , 20(1): 170~179.
    Fukao Y, Obayashi M and Nakakuki T. 2009. Stagnant slab: A review. Annual Review of Earth & Planetary Sciences, 37(37): 19~46.
    Goes S, Agrusta R, Hunen, J V and Garel F. 2017. Subduction—transition zone interaction: A review. Geosphere, 13(3): GES01476.1.
    Goes S, Capitanio F A, Morra G. 2008. Evidence of lower-mantle slab penetration phases in plate motions. Nature, 451(7181): 981.
    Guillot S, Replumaz A, Riel N, Hetenyi G. 2013. Importance of continental subductions for the growth of the Tibetan plateau. Bulletin De La Societe Geologique De France, 8(184): 199~223.
    He Rui, Yang Jiansi, Zhang Yi. 2007&. A review on the technology of seismic tomography. Computerized Tomography Theory and Applications, 16(1): 35~48.
    Helffrich G R and Wood B J. 2001. The Earth's mantle. Nature, 412(6846): 501.
    Hilst R D V D, Widiyantoro Sand Engdahl E R. 1997. Evidence for deep mantle circulation from global tomography. Nature, 386(6625): 578~584.
    Huang Jinli, Zhao Dapeng. 2006. High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research Solid Earth, 111(B9): 4813~4825.
    Kufner S K , Schurr B, Sippl C, Yuan X, Ratschbacher L, Akbar A S O M, Ischuk A, Murodkulov S, Schneider F and Mechie J. 2016. Deep India meets deep Asia: Lithospheric indentation, delamination and break-off under Pamir and Hindu Kush (Central Asia). Earth & Planetary Science Letters, 435: 171~184.
    Li Xueqing, Yuan Xiaohui, 2003. Receiver functions in northeast China —— implications for slab penetration into the lower mantle in northwest Pacific subduction zone. Earth & Planetary Science Letters, 216(4): 679~691.
    Manea V C, Manea M, Ferrari L, Orozco T, Valenzuela R W, Husker A and Kostoglodov V. 2017. A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile. Tectonophysics, 695: 27~52.
    Mao Zhu, Li Xinyang. 2016&. Effect of hydration on the elasticity of mantle minerals and its geophysical implications. Science China(Earth Sciences) 59.5: 873~888.
    Marquardt H, Miyagi L. 2015. Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity. Nature Geoscience: 8.
    Maruyama S, Yuen D A, Windley B F. 2007. Dynamics of Plumes and Superplumes through Time. Netherlands:Springer: 1109~1118.
    Murakami M, Bass J D. 2011. Evidence of denser MgSiO3 glass above 133 gigapascal (GPa) and implications for remnants of ultradense silicate melt from a deep magma ocean. Proceedings of the National Academy of Sciences of the United States of America, 108(42): 17286~17289.
    Nishi M, Irifune T, Tsuchiya J, Tange Y, Nishihara Y, Fujino K and Higo Y. 2014. Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nature Geoscience, 7(3): 224~227.
    Petitgirard S, Malfait W J, Sinmyo R, Kupenko I, Hennet L, Harries D, Dane T, Burghammer M, Rubie, D C. 2015. Fate of MgSiO3 melts at core—mantle boundary conditions. Proceedings of the National Academy of Sciences of the United States of America, 112(46): 14186~14190.
    Rudolph M L, Leki?倢 V, Lithgowbertelloni C. 2015. Viscosity jump in Earth's mid-mantle. Science, 350(6266): 1349.
    Schellart W P, Freeman J, Stegman D R, Moresi L, May D. 2007. Evolution and diversity of subduction zones controlled by slab width. Nature, 446(7133): 308.
    Schellart W P and Strak V. 2016. A review of analogue modelling of geodynamic processes:Approaches, scaling, materials and quantification, with an application to subduction experiments. Journal of Geodynamics, 100: 7~32.
    Spakman W and Hall R. 2010. Surface deformation and slab—mantle interaction during Banda arc subduction rollback. Nature Geoscience, 3(8): 562~566.
    Tackley P J. 2008. Geodynamics: Layer cake or plum pudding? Nature Geoscience, 1(3): 157~158.
    Thurber C. 2003. An Introduction to Seismology, Earthquakes, and Earth Structure. Physics Today, 56(10): 66~67.
    Tibi R, Wiens D A, Shiobara H, Sugioka H and Shore P J. 2006. Depth of the 660 km discontinuity near the Mariana slab from an array of ocean bottom seismographs. Geophysical Research Letters, 33(2): 356~360.
    Torii Y, Yoshioka S. 2007. Physical conditions producing slab stagnation: Constraints of the Clapeyron slope, mantle viscosity, trench retreat, and dip angles. Tectonophysics, 445(3): 200~209.
    Voo R V D, Spakman W, Bijwaard H. 1999. Mesozoic subducted slabs under Siberia. Nature, 397(6716): págs. 246~249.
    Yoshida M, Hamano Y. 2016. Numerical studies on the dynamics of two-layer Rayleigh—Bénard convection with an infinite Prandtl number and large viscosity contrasts. Physics of Fluids, 28(11): 357~369.
    Yoshio F and Masayuki O. 2013. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. Journal of Geophysical Research Solid Earth, 118(11): 5920~5938.
    Zhao Wenjin, Kumar P, Mechie J, Kind R, Meissner R, Wu Zhenhan, Shi Danian, Su Heping, Xue Guangqi and Karplus M. 2011. Tibetan plate overriding the Asian plate in central and northern Tibet. Nature Geoscience, 4(12): 870~873.
    Zhao Dapeng, Yamamoto Y and Yanada T. 2013. Global mantle heterogeneity and its influence on teleseismic regional tomography. Gondwana Research, 23(2): 595~616.
    Zhao Dapeng, Yu Sheng and Ohtani E. 2011. East Asia: Seismotectonics, magmatism and mantle dynamics. Journal of Asian Earth Sciences, 40(3): 689~709.
    Zhou Xiaoya, Ma Maining, Xu Zhishuang. 2014&. Progress of the low velocity zone atop the mantle transition zone. Progress in Geophysics, 29(4):1615~25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700