用户名: 密码: 验证码:
一次正地闪触发两个并发上行闪电的光电观测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optical and Electric Field Observations of Two Concurrent Upward Flashes Triggered by a Positive Cloud-to-ground Flash
  • 作者:武斌 ; 吕伟涛 ; 齐奇 ; 马颖 ; 陈绿文 ; 宿志国 ; 吴姗姗
  • 英文作者:Wu Bin;Lu Weitao;Qi Qi;Ma Ying;Chen Luwen;Su Zhiguo;Wu Shanshan;Laboratory of Lightning Physics and Protection Engineering/State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences;Institute of Tropical and Marine Meteorology China Meteorological Administration;
  • 关键词:高建筑物 ; 正地闪 ; 上行闪电
  • 英文关键词:tall object;;positive cloud-to-groud flash;;upward flash
  • 中文刊名:YYQX
  • 英文刊名:Journal of Applied Meteorological Science
  • 机构:中国气象科学研究院灾害天气国家重点实验室/雷电物理与防护工程实验室;中国气象局广州热带海洋气象研究所;
  • 出版日期:2019-05-15
  • 出版单位:应用气象学报
  • 年:2019
  • 期:v.30
  • 基金:国家重点研究发展计划(2017YFC1501504);; 国家自然科学基金面上项目(41775010,41475003)
  • 语种:中文;
  • 页:YYQX201903001
  • 页数:10
  • CN:03
  • ISSN:11-2690/P
  • 分类号:3-12
摘要
广州高建筑物雷电观测站光电同步观测系统于2017年6月16日记录到一次峰值电流达+141 kA的单回击正地闪触发两个并发上行闪电过程。利用高速摄像、普通摄像和电场变化数据分析了触发型上行闪电的始发特征和机理。结果表明:正地闪回击后约0.8 ms内,在距正地闪接地点约3.9 km的广州塔(高600 m)和4. 1 km的东塔(高530 m)分别有上行闪电始发。正地闪回击过程中和大量正电荷以及之后可能有云内负先导朝高塔方向快速伸展造成塔顶局部区域的电场发生突变是两个上行闪电激发的原因。两个上行闪电在353 ms内发生7次回击,其中6次在广州塔上,仅1次在东塔上,且广州塔回击峰值电流平均值(-21. 4 kA)约为东塔回击峰值电流(-7. 3 kA)的3倍,表明广州塔上行闪电通道可能比东塔上行闪电通道伸展至分布范围更广、电荷量(或电荷密度)更大的负电荷区。两个上行闪电先导的二维速率变化范围为9.4×10~4~1.8×10~6 m·s~(-1),平均值为6.9×10~5 m·s~(-1)。
        Tall objects are easy to trigger upward flashes. They also provide more opportunities for observation of upward flashes and a suitable platform for analyzing the intiation and development of upward flashes.Upward flashes are usually divided into two types, one is self-initiated and the other is triggered by environment, and the latter type is often related to the activity of positive cloud-to-ground(CG) flash. At present, development characteristics and triggering mechanism of the upward lightning channel are mainly studied based on the image of the extracloud lighting channel, the ground electric field change data and radar echo data. Few examples of mutiple upward flashes triggered by the same positive CG flash on different tall objects have been observed, and detailed characteristics of upward flashes are not well understood.On 16 June 2017, a positive CG flash(single stroke, peak current +141 kA) is recorded by the lightning photoelectric synchronous observation system of Tall Object Lightning Observatory in Guangzhou(TOLOG), triggering upward flashes of two nearby super-high-rise objects. Results show that within about 0. 8 ms after the return stroke of the positive CG flash, two upward negative flashes intiate from the Canton Tower(600 m high) and the East Tower(530 m high), which are about 3. 9 km and 4. 1 km away from the positive CG flash, respectively. The initiation of two upward flashes could be caused by combined effects of the return stroke of positive CG flash, its associated continuing current, and the negative leader in the cloud approching to towers. A total of 7 strokes occur in about 353 ms, 6 strokes on the Canton Tower and 1 stroke on the East Tower, and the leader/return stroke sequence on the Canton Tower occur after the leader/return stroke sequence and the attempt leader on the East Tower, i. e., there is no overlapping between strokes of two upward flashes. The average peak current(-21. 4 kA) of return strokes of upward flash initiating from the Canton Tower is about 3 times of the peak current(-7. 3 kA) from the East Tower. It's supposed that the negative charge region in the upper cloud of the Canton Tower is wider than that in the upper cloud of the East Tower, and the charge amount is larger. The 2 D velocity range of the positive leader of two upward flashes is 9. 4 × 10~4 to 1. 8 X 106 m · s~(-1), with an average of 6. 9 X 105 m ·s~(-1).
引文
[1] Miki M,Rakov V A,Shindo T,et al. Initial stage in lightning initiated from tall objects and in rocket-triggered lightning.Journal of Geophysical Research Atmospheres,2005,110(D2),DOI:10. 1029/2003jd004474.
    [2] Lu W,Wang D,Zhang Y,et al. Two associated upward lightning flashes that produced opposite polarity electric field changes. Geophys Res Lett, 2009,36(5):277-291, DOI:10.1029/2008GL036598.
    [3] Zhou H,Diendorfer G, Thottappillil R,et al. Measured current and close electric field changes associated with the initiation of upward lightning from a tall tower. Journal of Geophysical Research Atmospheres 2012,117(D8), DOI:10.1029/2011JD017269.
    [4] Jiang R,Qie X,Wu Z,et al. Characteristics of upward lightning from a 325-m-tall meteorology tower. Atmospheric Research, 2014, 149(6):111-119,DOI:10. 1016/j. atmosres.2014. 06.007.
    [5] Saba M M F,Cummins K L,Warner T A,et al. Positive leader characteristics from high-speed video observations. Geophys Res Lett, 2008, 35(7):243-246, DOI:10. 1029/2007gl033000.
    [6]张义军,孟青.马明,等.闪电探测技术发展和资料应用.应用气象学报,2006,17(5):611-620.
    [7]李俊,张义军,吕伟涛,等.一次多回击自然闪电的高速摄像观测.应用气象学报,2008,19(4):401-411.
    [8]李俊,吕伟涛,张义军,等.一次多分叉多接地的空中触发闪电过程.应用气象学报,2010,21(1):95-100.
    [9]任晓毓,张义军,吕伟涛,等.闪电先导随机模式的建立与应用.应用气象学报,2011,22(2):194-202.
    [10]李丹,张义军,吕伟涛,等.闪电先导三维自持发展模式的建立.应用气象学报,2015,26(2):203-210.
    [11] Wang D,Takagi N,Watanabe T,et al. Observed characteristics of upward leaders that are initiated from a windmill and its lightning protection tower. Geophys Res Lett,2008,35(2):196-199, DOI:10. 1029/2007gl032136.
    [12] Berger K. The Earth Flash, Physics of Lightning. 1977:119-190.
    [13] Warner T A,Helsdon J H J, Bunkers M J,et al. UPLIGHTS:Upward lightning triggering study. Bull Amer Meteor Soc,2013,94(5):631-635,DOI:10. 1175/BAMS-D-11-00252. 1.
    [14] Heidler F H,Manhardt M,Stimper K. Characteristics of upward positive lightning initiated from the Peissenberg Tower,Germany. IEEE Transactions on Electromagnetic Compatibility,2015, 57(1):102-111,DOI:10. 1109/TEMC. 2014.2359584.
    [15] Warner T A, Cummins K L,Orville R E. Upward lightning observations from towers in Rapid City, South Dakota and comparison with National Lightning Detection Network data,200A-2010. Journal of Geophysical Research Atmospheres,2012,117(D19),DOI:10. 1029/2012JD018346.
    [16] Saba M M F,Schumann C,Warner T A,et al. Upward lightning flashes characteristics from high-speed videos. Journal of Geophysical Research Atmospheres,2016,121(14):8493-8505,DOI:10. 1002/2016JD025137.
    [17] Miyake K,Suzuki T,Takashima M,et al. Winter lightning on Japan Sea coast-lightning striking frequency to tall structures. IEEE Transactions on Power Delivery,1990,5(3):1370-1376,DOI:10. 1109/61. 57979.
    [18] Warner T A. Observations of simultaneous upward lightning leaders from multiple tall structures. Atmospheric Research,2012,117(11):45-54, DOI:10. 1016/j. atmosres. 2011. 07.004.
    [19] Lu W,Chen L,Zhang Y,et al. Characteristics of unconnected upward leaders initiated from tall structures observed in Guangzhou. Journal of Geophysical Research Atmospheres,2012,117(D19),DOI:10. 1029/2012JD018035.
    [20] Lu W,Chen L,Ma Y,et al. Lightning attachment process involving connection of the downward negative leader to the lateral surface of the upward connecting leader. Geophys Res Lett,2013,40(20):5531-5535,DOI:10. 1002/2013gl058060.
    [21] Lv W,Ma Ying,Zhang Yang,et al. Total-sky Lightning Event Observation System and Method. US Patent, No. 8902312.Appl. No. 13/980,515. Appl. Date:2012-03-15. Issue Date:2014-12-02.
    [22] Wang D,Takagi N. Characteristics of winter lightning that occurred on a windmill and its lightning protection tower inJapan, IEEE Transactions on Power and Energy,2012, 132(6):568-572,DOI:10. 1541/ieejpes. 131. 532.
    [23] Chen Luwen,Zhang Yijun,Lu Weitao, et al. Performance evaluation for a lightning location system based on observations of artificially triggered lightning and natural lightning flashes. J Atmos Ocean Technol,2012,29:1835-1844, DOI:10. 1175/JTECH-D-12-00028. 1.
    [24] Rakov V A,Uman M A. Lightning:Physics and Effects. Cambridge:Cambridge University Press,2003.
    [25] Mazur V. Physical processes during development of lightning flashes. Comptes Rend us Physique, 2002,3(10):1393-1409,DOI:10. 1016/S1631-0705(02)01412-3.
    [26] Saba M F,Cummins K L,Warner T A,et al. Positive leader characteristics from high-speed video observations. Geophys Res Lett,2008,35(7):L07802,D()I:10. 1029/2007gl033000.
    [27] Campos L Z S,Saba M M F,Philip K E. Onβ_2 stepped leaders in negative cloud-to-ground lightning. Journal of GeophysicalResearch Atmospheres,2014,119(11):6749-6767, DOI:10.1002/2013JD021221.
    [28] Schumann C,Saba M M F, Warner T A,et al. Upward Flashes Triggering Mechanisms//International Symposium on Lightning Protection,2017.
    [29] Williams E R,Mattos E V,Machado L A T. Stroke multiplicity and horizontal scale of negative charge regions in thunderclouds. Geophys Res Lett, 2016,43(10),DOI:10. 1109/SIPDA. 2017. 8116941.
    [30] Schonland B F J. Progressive lightning IV. Proc R Soc, London,Ser A,1938,164:132-150.
    [31]谭涌波,张鑫,向春燕,等.建筑物上侧击雷电的三维数值模拟.应用气象学报,2017,28(2):227-236.
    [32]刘恒毅,董万胜,张义军.云闪K过程的三维时空特征.应用气象学报,2017,28(6):62-75.
    [33]林辉,谭涌波,马宇翔,等.雷暴云内电荷水平分布形式对闪电放电的影响.应用气象学报,2018,29(3):374-384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700