用户名: 密码: 验证码:
Al-4Zr合金中初生Al_3Zr相生长机制的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Growth Mechanism of Al_3Zr Phase in Al-4Zr Alloy
  • 作者:易珂可 ; 姜锋 ; 徐翩 ; 彭勇宜
  • 英文作者:Yi Keke;Jiang Feng;Xu Pian;Peng Yongyi;School of Materials Science and Engineering,Central South University;Light Alloy Research Institute,Central South University;Science and Technology on High Strength Structural Materials Laboratory;School of Physical Science and Electronics,Central South University;
  • 关键词:Al-Zr中间合金 ; 冷却速率 ; 初生Al_3Zr相 ; 三维形貌 ; 长大机制
  • 英文关键词:Al-Zr master alloy;;cooling rate;;primary Al_3Zr phase;;three-dimensional morphology;;growth mechanism
  • 中文刊名:ZXJS
  • 英文刊名:Chinese Journal of Rare Metals
  • 机构:中南大学材料科学与工程学院;中南大学轻合金研究院;轻质高强结构材料重点实验室;中南大学物理与电子学院;
  • 出版日期:2018-04-18 17:49
  • 出版单位:稀有金属
  • 年:2019
  • 期:v.43;No.275
  • 基金:湖南省自然科学基金项目(2017JJ2310);; 中南大学贵重仪器设备开放共享基金项目(CSUZC201720)资助
  • 语种:中文;
  • 页:ZXJS201902013
  • 页数:6
  • CN:02
  • ISSN:11-2111/TF
  • 分类号:104-109
摘要
以Al-4Zr中间合金为原料,通过熔炼得到不同冷却速率的合金试样。利用X射线衍射(XRD)和能谱分析(EDS)确定了初生Al_3Zr相的微观结构,通过扫描电镜(SEM)观察了初生Al_3Zr相的数量、尺寸和二维形貌,使用强碱腐蚀并通过SEM观察到了初生Al_3Zr相的三维形貌,进而研究分析了冷却速率对Al-4Zr合金中的初生Al_3Zr相的影响以及不同冷却速率下初生Al_3Zr相的生长机制。结果表明:随着冷却速率的加快,初生Al_3Zr相的二维形貌由粗大的板条状向细针状转变,数量增加,尺寸减小。由于Al_3Zr相的{001}面为光滑界面,生长速率缓慢,冷却速率低时呈粗大板条状的Al_3Zr粒子三维形貌为厚板状,生长机制为二维晶核生长;冷却速率快时呈细针状的Al_3Zr粒子的三维形貌为薄片流星镖状,生长机制为小平面枝晶生长。
        Al-4%Zr alloy was melted and cooled at different rates to get the samples. To study the effect of cooling rates on morphology and growth mechanism of primary Al_3Zr phase, X-ray diffraction(XRD) and energy dispersive spectroscopy(EDS) were used to characterize the microstructure of the samples. Scanning electron microscopy(SEM) was taken to observe number, size and morphology of the phase. The results showed that with the increase of the cooling rate, the two-dimensional morphology of the primary Al_3Zr phase was transformed from coarse plate shape to fine needle shape, and its size decreased and amount increased. Because {001} plane of Al_3Zr was smooth and its growth rate was low, the three-dimensional morphology of Al_3Zr showed thick plate shape and the growth mechanism was two-dimensional at low cooling rate. However, when the cooling rate became high, the three-dimensional phase changed to thin throwing-star shape and the growth mechanism turned to faceted dendritic growth.
引文
[1] Guo C, Li B M, Zhang H T, Cui J Z. Research status and development trend of high-strength and corrosion-resistant 5xxx series aluminum alloy [J]. Chinese Journal of Rare Metals, 2018, 42(8): 878.(郭成, 李宝绵, 张海涛, 崔建忠. 高强耐蚀5xxx系铝合金的研究现状及发展趋势 [J]. 稀有金属, 2018, 42(8): 878.)
    [2] Cui C P, Zhang G S, Wei S Z, Xu L J. Effect of Zr on microstructure and properties of TZM alloys [J]. Chinese Journal of Rare Metals, 2012, 36(5): 711.(崔超鹏, 张国赏, 魏世忠, 徐流杰. Zr元素对TZM合金组织和性能的影响 [J]. 稀有金属, 2012, 36(5): 711.)
    [3] Zhang J C, Ding D Y, Zhang W L, Kang S H, Xu X L, Gao Y J, Chen G Z, Chen W G, You X H. Effect of Zr addition on microstructure and properties of Al-Mn-Si-Zn-based alloy [J]. Transactions of Nonferrous Metals Society of China, 2014, 24: 3872.
    [4] Yu A W, Gu D, Su G Y, Yang C G, Qi H Y. Recrystallization of aluminum alloy with Ti, Zr composite microalloying [J]. Chinese Journal of Rare Metals, 2016, 40(12): 1200.(余爱武, 顾丹, 宿国友, 杨成刚, 齐海雁. Ti, Zr复合微合金化对铝合金再结晶的影响 [J]. 稀有金属, 2016, 40(12): 1200.)
    [5] Fischer E, Colinet C. An updated thermodynamic modeling of the Al-Zr system [J]. Journal of Phase Equilibria and Diffusion, 2015, 36(5): 404.
    [6] Seyed E S H, Emamy M, Pourkia N. The microstructure, hardness and tensile properties of a new super high strength aluminum alloy with Zr addition [J]. Materials & Design, 2010, 31(9): 4450.
    [7] Zhang Y X. Effect of structures heredities of Al-Ti and Al-Zr master alloys on casting structures of aluminum alloys [J]. Light Alloy Fabrication Technology, 1998, 26(11): 11.(张映新. Al-Ti和Al-Zr中间合金组织遗传性对铝合金铸造组织的影响 [J]. 轻合金加工技术, 1998, 26(11): 11.)
    [8] Li L, Zhang Y D, Esling C, Jiang H X, Zhao Z H, Zuo Y B, Cui J Z. Crystallographic features of the primary Al3Zr phase in as-cast Al-1.36wt% Zr alloy [J]. Journal of Crystal Growth, 2011, 316: 172.
    [9] Brodova I G, Bashlykov D V, Manukhin A B, Stolyarov V V, Soshikova E P. Formation of nanostructure in rapidly solidified Al-Zr alloy by severe plastic deformation [J]. Scripta Materialia, 2001, 44(8): 1761.
    [10] Desch P B, Schwarz R B, Nash P. Formation of metastable L12 phase in Al3Zr and Al-12.5%X-25%Zr (X=Li, Cr, Fe, Ni, Cu)[J]. Journal of the Less Common Metals, 1991, 168: 69.
    [11] Li F, Zhu Q F, Wang W J, Zhao Z H, Cui J Z. Three-dimensional morphology of primary Al3Zr phase in Al-5Zr master alloy and its dependence on pouring temperature [J]. Rare Metal Materials and Engineering, 2016, 45(9): 2398.(李飞, 朱庆丰, 王文静, 赵志浩, 崔建忠. Al-5Zr中间合金初生Al3Zr相三维形貌及其对浇注温度的依赖性 [J]. 稀有金属材料与工程, 2016, 45(9): 2398.)
    [12] Zhen S, Davies G J. Observations of the growth morphology of the intermetallic compound Al3Zr [J]. Journal of Crystal Growth, 1983, 64: 407.
    [13] Chernov A A. Stability of faceted shapes [J]. Journal of Crystal Growth, 1974, 24-25: 11.
    [14] Wang F, Eskin D, Connolley T, Mi J W. Influence of ultrasonic treatment on formation of primary Al3Zr in Al-0.4Zr alloy [J]. Transactions of Nonferrous Metals Society of China, 2017, 27: 977.
    [15] Li H T, Wang Y, Fan Z. Mechanisms of enhanced heterogeneous nucleation during solidification in binary Al-Mg alloys [J]. Acta Materialia, 2012, 60: 1528.
    [16] Hyde K B, Norman A F, Prangnell P B. The effect of cooling rate on the morphology of primary Al3Sc intermetallic particles in Al-Sc alloys [J]. ActaMaterialia, 2001, 49: 1327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700