用户名: 密码: 验证码:
Transparently curved metamaterial with broadband millimeter wave absorption
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transparently curved metamaterial with broadband millimeter wave absorption
  • 作者:CHENG ; ZHANG ; JIN ; YANG ; WENKANG ; CAO ; WEI ; YUAN ; JUNCHEN ; KE ; LIUXI ; YANG ; QIANG ; CHENG ; TIEJUN ; CUI
  • 英文作者:CHENG ZHANG;JIN YANG;WENKANG CAO;WEI YUAN;JUNCHEN KE;LIUXI YANG;QIANG CHENG;TIEJUN CUI;State Key Laboratory of Millimeter Waves, Southeast University;
  • 中文刊名:GZXJ
  • 英文刊名:光子学研究(英文版)
  • 机构:State Key Laboratory of Millimeter Waves, Southeast University;
  • 出版日期:2019-04-25
  • 出版单位:Photonics Research
  • 年:2019
  • 期:v.7
  • 基金:National Key Research and Development Program of China(2017YFA0700201,2017YFA0700202,2017YFA0700203);; National Natural Science Foundation of China(NSFC)(11227904,61138001,61371035,61501112,61501117,61522106,61571117,61631007,61701107,61701108,61722106,61731010);; 111 Project(111-2-05);; Natural Science Foundation of Jiangsu Province(BK20150020);; Fundamental Research Funds for the Central Universities(KYCX17_0091);; Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX17_0091);; Scientific Research Foundation of Graduate School of Southeast University(YBJJ1812)
  • 语种:英文;
  • 页:GZXJ201904012
  • 页数:8
  • CN:04
  • ISSN:31-2126/O4
  • 分类号:108-115
摘要
We present a conformal metamaterial with simultaneous optical transparency and broadband millimeter-wave absorption for a curved surface. By tailoring the reflection response of meta-atoms at oblique angles, it is possible to achieve excellent absorption performance from 26.5 to 40.0 GHz within a wide angular range from 0° to 60°for transverse-electric and transverse-magnetic waves. In the meantime, by employing transparent substrates,including polyvinyl chloride and polyethylene terephthalate, good optical transmittance(80.1%) and flexibility are obtained simultaneously. The reflectivity of a curved metallic surface coated with the proposed curved metamaterial is simulated and measured experimentally. Both results demonstrate excellent absorption performance of the metamaterial, which is highly favored for practical applications.
        We present a conformal metamaterial with simultaneous optical transparency and broadband millimeter-wave absorption for a curved surface. By tailoring the reflection response of meta-atoms at oblique angles, it is possible to achieve excellent absorption performance from 26.5 to 40.0 GHz within a wide angular range from 0° to 60°for transverse-electric and transverse-magnetic waves. In the meantime, by employing transparent substrates,including polyvinyl chloride and polyethylene terephthalate, good optical transmittance(80.1%) and flexibility are obtained simultaneously. The reflectivity of a curved metallic surface coated with the proposed curved metamaterial is simulated and measured experimentally. Both results demonstrate excellent absorption performance of the metamaterial, which is highly favored for practical applications.
引文
1.Y.Naito and K.Suetake,“Application of ferrite to electromagnetic wave absorber and its characteristics,”IEEE Trans.Microwave Theory Tech.19,65-72(1971).
    2.S.Ohkoshi,S.Kuroki,S.Sakurai,K.Matsumoto,K.Sato,and S.Sasaki,“A millimeter-wave absorber based on gallium-substitutedε-iron oxide nanomagnets,”Angew.Chem.Int.Ed.46,8392-8395(2007).
    3.A.Namai,S.Kurahashi,H.Hachiya,K.Tomita,S.Sakurai,K.Matsumoto,Y.Goto,and S.Ohkoshi,“High magnetic permeability ofε-GaxFe2-xO3magnets in the millimeter wave region,”J.Appl.Phys.107,09A955(2010).
    4.L.B.Kong,Z.W.Li,L.Liu,R.Huang,M.Abshinova,Z.H.Yang,C.B.Tang,P.K.Tan,C.R.Deng,and S.Matitsine,“Recent progress in some composite materials and structures for specific electromagnetic applications,”Int.Mater.Rev.58,203-259(2013).
    5.H.L.Lv,Y.H.Guo,Z.H.Yang,Y.Cheng,L.Y.P.Wang,B.S.Zhang,Y.Zhao,Z.C.J.Xu,and G.B.Ji,“A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,”J.Mater.Chem.C 5,491-512(2017).
    6.T.J.Cui,“Microwave metamaterials,”Nat.Sci.Rev.5,134-136(2017).
    7.T.J.Cui,“Microwave metamaterials-from passive to digital and programmable controls of electromagnetic waves,”J.Opt.19,084004(2017).
    8.D.R.Smith and J.B.Pendry,“Homogenization of metamaterials by field averaging,”J.Opt.Soc.Am.B 23,391-403(2006).
    9.N.I.Landy,S.Sajuyigbe,J.J.Mock,D.R.Smith,and W.J.Padilla,“Perfect metamaterial absorber,”Phys.Rev.Lett.100,207402(2008).
    10.Q.Cheng,T.J.Cui,W.X.Jiang,and B.G.Cai,“An omnidirectional electromagnetic absorber made of metamaterials,”New J.Phys.12,063006(2010).
    11.C.M.Watts,X.Liu,and W.J.Padilla,“Metamaterial electromagnetic wave absorbers,”Adv.Mater.24,OP98-OP120(2012).
    12.Z.H.Jiang,S.Yun,F.Toor,D.H.Werner,and T.S.Mayer,“Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,”ACS Nano 5,4641-4647(2011).
    13.R.Yahiaoui,J.P.Guillet,F.de Miollis,and P.Mounaix,“Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications,”Opt.Lett.38,4988-4990(2013).
    14.H.Tao,C.M.Bingham,A.C.Strikwerda,D.Pilon,C.Shrekenhamer,N.I.Landy,K.Fan,X.Zhang,W.J.Padilla,and R.D.Averitt,“Highly flexible wide angle of incidence terahertz metamaterial absorber:design fabrication and characterization,”Phys.Rev.B 78,241103(2008).
    15.K.Iwaszczuk,A.C.Strikwerda,K.Fan,X.Zhang,R.D.Averitt,and P.U.Jepsen,“Flexible metamaterial absorbers for stealth applications at terahertz frequencies,”Opt.Express 20,635-643(2012).
    16.F.Zhang,S.Feng,K.Qiu,Z.Liu,Y.Fan,W.Zhang,Q.Zhao,and J.Zhou,“Mechanically stretchable and tunable metamaterial absorber,”Appl.Phys.Lett.106,091907(2015).
    17.Y.C.Fan,F.L.Zhang,Q.Zhao,Z.Y.Wei,and H.Q.Li,“Tunable terahertz coherent perfect absorption in a monolayer graphene,”Opt.Lett.39,6269-6272(2014).
    18.Y.Fan,Z.Liu,F.Zhang,Q.Zhao,Z.Wei,Q.Fu,J.Li,C.Gu,and H.Li,“Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,”Sci.Rep.5,13956(2015).
    19.B.Wu,H.M.Tuncer,M.Naeem,B.Yang,M.T.Cole,W.I.Milne,and Y.Hao,“Experimental demonstration of a transparent graphene millimeter wave absorber with 28%fractional bandwidth at 140 GHz,”Sci.Rep.4,4130(2014).
    20.Y.Okano,S.Ogino,and K.Ishikawa,“Development of optically transparent ultrathin microwave absorber for ultrahigh-frequency RF identification system,”IEEE Trans.Microw.Theory Tech.60,2456-2464(2012).
    21.C.Zhang,Q.Cheng,J.Yang,J.Zhao,and T.J.Cui,“Broadband metamaterial for optical transparency and microwave absorption,”Appl.Phys.Lett.110,143511(2017).
    22.J.Zhao,C.Zhang,Q.Cheng,J.Yang,and T.J.Cui,“An optically transparent metasurface for broadband microwave antireflection,”Appl.Phys.Lett.112,073504(2018).
    23.D.W.Hu,J.Cao,W.Li,C.Zhang,T.L.Wu,Q.F.Li,Z.H.Chen,Y.L.Wang,and J.G.Guan,“Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,”Adv.Opt.Mater.5,1700109(2017).
    24.T.Jang,H.Youn,Y.J.Shin,and L.J.Guo,“Transparent and flexible polarization-independent microwave broadband absorber,”ACSPhoton.1,279-284(2014).
    25.Y.Shen,J.Q.Zhang,L.H.Shen,S.Sui,Y.Q.Pang,J.F.Wang,H.Ma,and S.B.Qu,“Transparent and broadband absorption-diffusionintegrated low-scattering metamaterial by standing-up lattice,”Opt.Express 26,28363-28375(2018).
    26.Y.Shen,J.Q.Zhang,L.H.Shen,S.Sui,Y.Q.Pang,J.F.Wang,H.Ma,and S.B.Qu,“Transparent absorption-diffusion-integrated waterbased all-dielectric metasurface for broadband backward scattering reduction,”J.Phys.D 51,485301(2018).
    27.Y.Shen,J.Q.Zhang,Y.Q.Pang,J.F.Wang,H.Ma,and S.B.Qu,“Transparent broadband metamaterial absorber enhanced by watersubstrate incorporation,”Opt.Express 26,15665-15674(2018).
    28.J.Sun,L.Liu,G.Dong,and J.Zhou,“An extremely broad band metamaterial absorber based on destructive interference,”Opt.Express19,21155-21162(2011).
    29.Y.Shen,J.Q.Zhang,Y.Y.Meng,Z.L.Wang,Y.Q.Pang,J.F.Wang,H.Ma,and S.B.Qu,“Merging absorption bands of plasmonic structures via dispersion engineering,”Appl.Phys.Lett.112,254103(2018).
    30.S.Liu,H.Chen,and T.J.Cui,“A broadband terahertz absorber using multi-layer stacked bars,”Appl.Phys.Lett.106,151601(2015).
    31.B.Monacelli,J.B.Pryor,B.A.Munk,D.Kotter,and G.D.Boreman,“Infrared frequency selective surface based on circuit-analog square loop design,”IEEE Trans.Anntenas Propag.53,745-752(2005).
    32.D.S.Dong,J.Yang,Q.Cheng,J.Zhao,L.H.Gao,S.J.Ma,S.Liu,H.B.Chen,Q.He,W.W.Liu,Z.Fang,L.Zhou,and T.J.Cui,“Terahertz broadband low-reflection metasurface by controlling phase distributions,”Adv.Opt.Mater.3,1405-1410(2015).
    33.D.Y.Shchegolkov,A.K.Azad,J.F.O’Hara,and E.I.Simakov,“Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,”Phys.Rev.B 82,205117(2010).
    34.P.K.Singh,K.A.Korolev,M.N.Afsar,and S.Sonkusale,“Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,”Appl.Phys.Lett.99,264101(2011).
    35.X.P.Shen,Y.Yang,Y.Zang,J.Gu,J.Han,W.Zhang,and T.J.Cui,“Triple-band terahertz metamaterial absorber:design,experiment,and physical interpretation,”Appl.Phys.Lett.101,154102(2012).
    36.H.Tao,N.I.Landy,C.M.Bingham,X.Zhang,R.D.Averitt,and W.J.Padilla,“A metamaterial absorber for the terahertz regime:design,fabrication and characterization,”Opt.Express 16,7181-7188(2008).
    37.F.Ding,Y.Cui,X.Ge,Y.Jin,and S.He,“Ultra-broadband microwave metamaterial absorber,”Appl.Phys.Lett.100,103506(2012).
    38.J.Zhu,Z.Ma,W.Sun,F.Ding,Q.He,L.Zhou,and Y.Ma,“Ultrabroadband terahertz metamaterial absorber,”Appl.Phys.Lett.105,021102(2014).
    39.X.Chen,B.-I.Wu,J.A.Kong,and T.M.Grzegorczyk,“Retrieval of the effective constitutive parameters of bianisotropic metamaterials,”Phys.Rev.E 71,046610(2005).
    40.X.Chen,T.M.Grzegorczyk,B.I.Wu,J.Pacheco,and J.A.Kong,“Robust method to retrieve the constitutive effective parameters of metamaterials,”Phys.Rev.E 70,016608(2004).
    41.D.M.Pozar,Microwave Engineering,2nd ed.(Wiley,1998).
    42.B.A.Munk,P.Munk,and J.Pryor,“On designing Jaumann and circuit analog absorbers(CA absorbers)for oblique angle of incidence,”IEEE Trans.Antennas Propag.55,186-193(2007).
    43.S.Maci,M.Caiazzo,A.Cucini,and M.Casaletti,“A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab,”IEEE Trans.Antennas Propag.53,70-81(2005).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700