用户名: 密码: 验证码:
不同样品温度下聚焦透镜到样品表面距离对激光诱导铜击穿光谱的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of distance between focusing lens and sample surface on laser-induced breakdown spectroscopy of brass at different sample temperatures
  • 作者:杨雪 ; 李苏宇 ; 姜远飞 ; 陈安民 ; 金明星
  • 英文作者:Yang Xue;Li Su-Yu;Jiang Yuan-Fei;Chen An-Min;Jin Ming-Xing;College of Science, Jilin Institute of Chemical Technology;Institute of Atomic and Molecular Physics,Jilin University;Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy (Jilin University);
  • 关键词:激光诱导击穿光谱 ; 样品温度 ; 聚焦透镜到样品表面距离 ; 等离子体温度和电子密度
  • 英文关键词:laser-induced breakdown spectroscopy;;sample temperature;;distance between focusing lens and sample surface;;plasma temperature and electron density
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:吉林化工学院理学院;吉林大学原子与分子物理研究所;吉林省应用原子分子光谱重点实验室;
  • 出版日期:2019-03-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:11674128,11674124);; 吉林省科技发展计划(批准号:20170101063JC)资助的课题~~
  • 语种:中文;
  • 页:WLXB201906022
  • 页数:9
  • CN:06
  • ISSN:11-1958/O4
  • 分类号:174-182
摘要
研究了不同温度下聚焦透镜到样品表面距离对激光诱导击穿光谱(laser-induced breakdown spectroscopy,LIBS)强度的影响,使用Nd:YAG脉冲激光激发样品并产生等离子体,探测的等离子体发射的光谱线为Cu(Ⅰ)510.55 nm,Cu(Ⅰ)515.32 nm和Cu(Ⅰ)521.82 nm.使用透镜的焦距为200 mm,测量的聚焦透镜到样品表面距离的范围为170—200 mm,样品温度从25℃升高到270℃,激光能量为26 mJ.总体上,升高样品温度能有效地提高LIBS光谱的辐射强度.在25℃和100℃时,光谱强度随着聚焦透镜到样品表面距离的增加而单调增加;在样品温度更高(150, 200, 250和270℃)时,光谱强度随着距离的增加出现先升高而后又降低的变化.同时,在样品接近焦点附近,随着样品温度的升高,LIBS光谱强度的变化不明显,还可能出现光谱强度随着样品温度升高而降低的情况,这在通过升高样品温度来提高LIBS光谱强度中特别值得我们注意.为了更进一步了解这两个条件对LIBS的影响,计算了等离子体温度和电子密度,发现等离子体温度和电子密度的变化与光谱强度的变化几乎一致,更高样品温度下产生的等离子体温度和电子密度更高.
        From previously published results of laser-induced breakdown spectroscopy, one can know that the change in the distance from the sample surface to the focusing lens has an important influence on the interaction between the sample and the laser, and increasing the sample temperature can enhance the coupling between the laser and the sample. However, almost no work has devoted to directly studying the influence of the distance between focusing lens and sample surface on the spectral intensity of laser-induced breakdown spectroscopy under different sample temperatures. In this paper, we investigate experimentally this subject. An Nd:YAG laser is used to excite the sample to produce the plasma. The detected spectral lines are Cu(I) 510.55 nm, Cu(Ⅰ)515.32 nm, and Cu(I) 521.82 nm. The focal length of focusing lens is 200 nm. The distance between focusing lens and sample surface ranges from 170 mm to 200 mm. The sample is heated from 25℃ to 270℃, and the laser energy is 26 mJ. In general, the spectral intensity of laser-induced breakdown spectroscopy can be effectively enhanced by increasing the sample temperature. At the sample temperatures of 25 ℃ and 100 ℃, the spectral intensity increases monotonically with the increase of the distance between focusing lens and sample surface; at higher sample temperatures(150, 200, 250, and 270 ℃), the spectral intensity first increases and then decreases with the increase of the distance between focusing lens and sample surface. In addition, near the focal point, with the increase of sample temperature, the increase of the spectral intensity is not obvious, and the spectral intensity decreases with the increase of sample temperature, which is particularly noteworthy in improving the spectral intensity of laser-induced breakdown spectroscopy by increasing sample temperature. In order to further understand the influences of these two conditions on laser-induced breakdown spectroscopy, we also calculate the plasma temperature and electron density, and find that the variation of plasma temperature and electron density are almost the same as that of spectral intensity. The plasma temperature and electron density at higher sample temperature are higher.
引文
[1] Wang Z, Dong F, Zhou W 2015 Plasma Sci. Technol. 17 617
    [2] Wang Z, Ting B, Yuan, Z Y, Zhou W D, Lu J D, Ding H B,Zeng X Y 2014 Front. Phys. 9 419
    [3] Wang Z Z, Deguchi Y, Zhang Z Z, Wang Z, Zeng X Y, Yan J J 2016 Front. Phys. 11 114213
    [4] Zhu G Z, Guo L B, Hao Z Q, Li C M, Shen M, Li K H, Li X Y, Liu J G, Zeng X Y, Lu Y F 2015 Acta Phys. Sin. 64024212(in Chinese)[朱光正,郭连波,郝中骐,李常茂,沈萌,李阔湖,李祥友,刘建国,曾晓雁,陆永枫2015物理学报64024212]
    [5] Wang Q Q, Liu K, Zhao H, Ge C H, Huang Z W 2012 Front.Phys. 7 701
    [6] Hu L, Zhao N, Liu W, Meng D, Fang L, Wang Y, Yu Y, Ma M 2015 Plasma Sci. Technol. 17 699
    [7] Wang Y, Chen A, Li S, Sui L, Liu D, Tian D, Jiang Y, Jin M2016 J. Anal. Atom. Spectrom. 31 497
    [8] Li Y, Tian D, Ding Y, Yang G, Liu K, Wang C, Han X 2018Appl. Spectrosc. Rev. 53 1
    [9] Li X, Wang Z, Fu Y, Li Z, Ni W 2015 Plasma Sci. Technol.17 621
    [10] Wang X, Chen A,Sui L, Wang Y, Zhang D, Li S, Jiang Y,Jin M 2018 J. Anal. Atom. Spectrom. 33 168
    [11] Wu Y Q, Liu J, Mo X X, Sun T, Liu M H 2017 Acta Phys.Sin. 66 054206(in Chinese)[吴宜青,刘津,莫欣欣,孙通,刘木华2017物理学报66 054206]
    [12] Lu Y, Zhou Y S, Qiu W, Huang X, Liu L, Jiang L, Silvain J F, Lu Y F 2015 J. Anal. Atom. Spectrom. 30 2303
    [13] Li B H, Gao X, Song C, Lin J Q 2016 Acta Phys. Sin. 65235201(in Chinese)[李百慧,高勋,宋超,林景全2016物理学报65 235201]
    [14] Li C M, Guo L B, He X N, Hao Z Q, Li X Y, Shen M, Zeng X Y, Lu Y F 2014 J. Anal. Atom. Spectrom. 29 638
    [15] Wang Q, Chen A, Zhang D, Wang Y, Sui L, Li S, Jiang Y,Jin M 2018 Phys. Plasmas 25 073301
    [16] Zhou W, Su X, Qian H, Li K, Li X, Yu Y, Ren Z 2013 J.Anal. Atom. Spectrom. 28 702
    [17] Liu L, Huang X, Li S, Lu Y, Chen K, Jiang L, Silvain J F, Lu Y F 2015 Opt. Express 23 15047
    [18] de Giacomo A, Gaudiuso R, Koral C, Dell'Aglio M,de Pascale O 2013 Anal. Chem. 85 10180
    [19] Li C, Hao Z, Zou Z, Zhou R, Li J, Guo L, Li X, Lu Y, Zeng X 2016 Opt. Express 24 7850
    [20] Tavassoli S H, Gragossian A 2009 Opt. Laser Technol. 41 481
    [21] Sangines R, Sobral H, Alvarez-Zauco E 2012 Appl. Phys. B108 867
    [22] Sangines R, Sobral H, Alvarez-Zauco E 2012 Spectrochim.Acta B 68 40
    [23] Darbani S M R, Ghezelbash M, Majd A E, Soltanolkotabi M,Saghafifar H 2014 J. Eur. Opt. Soc.-Rapid 9 14058
    [24] Hanson C, Phongikaroon S, Scott J R 2014 Spectrochim. Acta B 97 79
    [25] Wang Y, Chen A, Jiang Y, Sui L, Wang X, Zhang D, Tian D,Li S, Jin M 2017 Phys. Plasmas 24 013301
    [26] Eschlbock-Fuchs S, Haslinger M J, Hinterreiter A, Kolmhofer P, Huber N, Rossler R, Heitz J, Pedarnig J D 2013Spectrochim. Acta B 87 36
    [27] Liu Y, Tong Y, Li S, Wang Y, Chen A, Jin M 2016 Chin.Opt. Lett. 14 123001
    [28] Liu Y, Tong Y, Wang Y, Zhang D, Li S, Jiang Y, Chen A,Jin M 2017 Plasma Sci. Technol. 19 125501
    [29] Zhang D,Chen A,Wang Q,Wang Y,Qi H,Li S,Jiang Y,Jin M 2018 Phys. Plasmas 25 083305
    [30] Multari R A, Foster L E, Cremers D A, Ferris M J 1996Appl. Spectrosc. 50 1483
    [31] Aguilera J A, Aragon C. 2008 Spectrochim. Acta B 63 793
    [32] Chen M, Liu Y H, Liu X D, Zhao M W 2012 Laser Phys.Lett. 9 730
    [33] Kasperczuk A, Pisarczyk T, Kalal M, Ullschmied J, Krousky E, Masek K, Pfeifer M, Rohlena K, Skala J, Pisarczyk P 2009Appl. Phys. Lett. 94 081501
    [34] Guo J, Shao J, Wang T, Zheng C, Chen A, Jin M 2017 J.Anal. Atom. Spectrom. 32 367
    [35] Zhang D, Chen A, Wang X, Wang Y, Sui L, Ke D, Li S,Jiang Y, Jin M 2018 Spectrochim. Acta B 143 71
    [36] Liu Y H, Chen M, Liu X D, Cui Q Q, Zhao M W 2013 Acta Phys.Sin.62 025203(in Chinese)[刘月华,陈明,刘向东,崔清强,赵明文2013物理学报62 025203]
    [37] Li X, Wei W, Wu J, Jia S, Qiu A 2013 J. Appl. Phys. 113243304
    [38] Amin S, Bashir S, Anjum S, Akram M, Hayat A, Waheed S,Iftikhar H, Dawood A, Mahmood K 2017 Phys. Plasmas 24083112
    [39] Wang Y, Chen A, Wang Q, Sui L, Ke D, Cao S, Li S, Jiang Y, Jin M 2018 Phys. Plasmas 25 033302
    [40] Tian Y, Xue B, Song J, Lu Y, Li Y, Zheng R 2017 Appl.Phys. Express 10 072401
    [41] Wang Y, Chen A, Li S, Ke D, Wang X, Zhang D, Jiang Y,Jin M 2017 AIP Adv. 7 095204
    [42] Haq S U, Ahmat L, Mumtaz M, Shakeel H, Mahmood S,Nadeem A 2015 Phys. Plasmas 22 083504
    [43] Guo J, Wang T, Shao J, Chen A, Jin M 2018 J. Anal. Atom.Spectrom. 33 2116
    [44] Thorstensen J, Foss S E 2012 J. Appl. Phys. 112 103514
    [45] Zhao F G, Zhang Y, Zhang L, Yin W B, Dong L, Ma W G,Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 165201(in Chinese)[赵法刚,张宇,张雷,尹王保,董磊,马维光,肖连团,贾锁堂2018物理学报67 165201]
    [46] Yang D P, Li S Y, Jiang Y F, Chen A M, Jin M X 2017 Acta Phys.Sin. 66 115201(in Chinese)[杨大鹏,李苏宇,姜远飞,陈安民,金明星2017物理学报66 115201]
    [47] Wang Q, Chen A, Wang Y, Sui L, Li S, Jin M 2018 J. Anal.Atom. Spectrom. 33 1154
    [48] Chen A, Jiang Y, Wang T, Shao J, Jin M 2015 Phys.Plasmas 22 033301
    [49] NIST Atomic Spectra Database http://physics.nist.gov/Phys RefData/ASD/lines_form.html
    [50] Wang J, Fu H, Ni Z, Chen X, He W, Dong F 2015 Plasma Sci. Technol. 17 649
    [51] Konjevic N, Wiese W 1990 J. Phys. Chem. Ref. Data 19 1307

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700