用户名: 密码: 验证码:
CF/Al复合材料横向拉伸渐进损伤与弹塑性力学行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progressive damage and elastic-plastic behavior of CF/Al composites during transverse tensile process
  • 作者:王振军 ; 田亮 ; 蔡长春 ; 余欢 ; 徐志锋 ; Gui ; WANG ; Matthew ; S.DARGUSCH
  • 英文作者:WANG Zhen-jun;TIAN Liang;CAI Chang-chun;YU Huan;XU Zhi-feng;Gui WANG;Matthew S.DARGUSCH;National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University;Center of Advanced Materials Processing and Manufacturing,The University of Queensland;
  • 关键词:铝基复合材料 ; 细观力学 ; 单胞 ; 渐进损伤 ; 界面 ; 数值模拟
  • 英文关键词:aluminum matrix composite;;micromechanics;;unit cell;;progressive damage;;interface;;numerical simulation
  • 中文刊名:ZYXZ
  • 英文刊名:The Chinese Journal of Nonferrous Metals
  • 机构:南昌航空大学轻合金加工科学与技术国防重点学科实验室;Center of Advanced Materials Processing and Manufacturing, The University of Queensland;
  • 出版日期:2019-03-15
  • 出版单位:中国有色金属学报
  • 年:2019
  • 期:v.29;No.240
  • 基金:国家自然科学基金资助项目(51765045,51365043);; 国家留学基金资助项目(201608360034);; 江西省自然科学基金资助项目(20171BAB201021);; 江西省教育厅科学研究基金资助项目(GJJ1607055)~~
  • 语种:中文;
  • 页:ZYXZ201903004
  • 页数:9
  • CN:03
  • ISSN:43-1238/TG
  • 分类号:36-44
摘要
针对真空压力浸渗制备的单向碳纤维增强铝合金复合材料(CF/Al复合材料),采用细观力学数值模拟与实验结合的方法研究了其横向拉伸损伤演化和断裂力学行为,并分析了界面对复合材料横向拉伸力学性能的影响。结果表明,基于基体合金延性损伤和界面内聚力损伤本构所建立的细观单胞有限元模型,可以实现CF/Al复合材料横向拉伸弹塑性力学响应的计算和预测。复合材料横向拉伸时先后发生界面损伤、界面失效以及基体损伤累积与失效现象,界面损伤脱粘并诱发基体塑性损伤和失效是导致复合材料横向断裂的主要机理。增加界面强度有利于提高横向拉伸屈服强度和极限强度,界面刚度对极限强度影响不大,但增加界面刚度可有效提高复合材料横向拉伸弹性模量。
        The unidirectional graphite fiber M40 J reinforced aluminum alloy composites(CF/Al composites) was fabricated by vacuum assisted pressure infiltration technology. The elastic-plastic mechanical behavior and the damage evolution behavior of composites was evaluated using micromechanics FEM and tensile testing method. According to the numerical simulation and experimental results, the influence of interface property on the mechanical properties of the campsites during transverse tensile process was also analyzed. The results show that the micromechanical representative volume element(RVE) model established can evaluate the stress-strain behavior of the composites in transverse tensile process. The occurrences of initial damage, damage accumulation and failure in the interface and matrix alloy lead to the fracture of the composites. There is an important influence of interface property on the ductile damage evolution and failure of matrix alloy, which eventually determined the transverse fracture mechanical properties of the CF/Al composites.
引文
[1]RAWAL S.Metal-matrix composites for space applications[J].JOM,2001,53(4):14-17.
    [2]LEE M,CHOI Y,SUGIO K,MATSUGI K,SASAKI G.Effect of aluminum carbide on thermal conductivity of the unidirectional CF/Al composites fabricated by low pressure infiltration process[J].Composite Science and Technology,2014,97(16):1-5.
    [3]JACQUESSON M,GIRARD A,VIDALSE′TIF M H,VALLE R.Tensile and fatigue behavior of Al-based metal matrix composites reinforced with continuous carbon or alumina fibers:PartⅠ.Quasi-unidirectional composites[J].Metall Mater Trans A,2004,35:3289-3305.
    [4]LI D,CHEN G,JIANG L,XIU Z,ZHANG Y,WU G.Effect of thermal cycling on the mechanical properties of Cf/Al composites[J].Mat Sci Eng A,2013,586(01),330-337.
    [5]SHIRVANIMOGHADDAM K,HAMIM S U,KARBALAEIAKBARI M,FAKHRHOSEINI S M,KHAYYAM H,PAKSERESHT A H,GHASALI E,ZABET M,MUNIR K S,JIA S,DAVIM J P,NAEBE M.Carbon fiber reinforced metal matrix composites:Fabrication processes and properties[J].Composites:Part A,2017,92:70-76.
    [6]方光武,宋迎东,高希光.针刺C/SiC复合材料应力-应变模型及试验验证[J].复合材料学报,2016,33(4):827-832.FANG Guang-wu,SONG Ying-dong,GAO Xi-guang.Model and test validation of stress-strain for needled C/SiCcomposites[J].Acta Materiae Compositae Sinica,2016,33(4):827-832.
    [7]彭湃,赵美英,王文智.细观力学模型预测复合材料横向强度性能研究[J].机械科学与技术,2017,36(10):1611-1618.PENG Pai,ZHAO Mei-ying,WANG Wen-zhi.Transverse strength prediction of composite materials via micromechanics model[J].Mechanical Science and Technology for Aerospace,2017,36(10):1611-1618.
    [8]YANG L,YAN Y,LIU Y J,RAN Z G.Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression[J].Composites Science and Technology,2012,72(15):1818-1825
    [9]唐绍峰,梁军,杜善义.含界面相的单向纤维增强复合材料三维应力场的二重双尺度方法[J].复合材料学报,2010,27(1):167-172.TANG Shao-feng,LIANG Jun,DU Shan-yi.Dual two-scale method for 3D stress reinforced composites computation of unidirectional-fibre reinforced composites considering interphase[J].Acta Materiae Compositae Sinica,2010,27(1):167-172.
    [10]刘万雷,常新龙,张晓军,张磊.基于细观有限元方法的复合材料横向力学性能分析[J].材料工程,2016,44(11):107-113.LIU Wan-lei,CHANG Xin-long,ZHANG Xiao-jun,ZHANG Lei.Analysis of composite transverse mechanical properties based on micromechanical finite element method[J].Material Engineering,2016,44(11):107-113.
    [11]EVERETT R K,ARSENAULT R J.Metal matrix composites:Processing and interfaces[M].New York:Academic Press,1990.
    [12]孙超,沈茹娟,宋旼.有限元模拟SiC增强Al基复合材料的力学行为[J].中国有色金属学报,2012,22(2):476-484.SUN Chao,SHEN Ru-juan,SONG Min.Simulation of mechanical behaviors of Si C reinforced Al matrix composites by finite element method[J].The Chinese Journal of Nonferrous Metals,2012,22(2):476-484
    [13]周珍珍,徐志锋,余欢,王振军.编织结构对3D-Cf/Al复合材料显微组织与力学性能的影响[J].中国有色金属学报,2016,26(4):773-781.ZHOU Zhen-zhen,XU Zhi-feng,YU Huan,WANGZhen-jun.Effect of braiding structures on microstructure and mechanical properties of 3D-Cf/Al composites[J].The Chinese Journal of Nonferrous Metals,2016,26(4):773-781.
    [14]聂明明,徐志锋,徐鹏,余欢,王振军.纤维预热温度对3D-Cf/Al复合材料显微组织及力学性能的影响[J].中国有色金属学报,2016,26(5):1001-1009.NIE Ming-ming,XU Zhi-feng,XU Peng,YU Huan,WANGZhen-jun.Effect of fiber preheating temperature on microstructure and mechanical properties of 3D-Cf/Al composites[J].The Chinese Journal of Nonferrous Metals,2016,26(5):1001-1009.
    [15]徐志锋,徐燕杰,余欢,王振军,周珍珍.基体合金对连续Si Cf/Al复合材料显微组织及拉伸强度的影响[J].中国有色金属学报,2015,25(2):392-400.XU Zhi-feng,XU Yan-jie,YU Huan,WANG Zhen-jun,ZHOU Zhen-zhen.Effect of matrix alloy on microstructure and tensile strength of continuous SiCf/Al composite[J].The Chinese Journal of Nonferrous Metals,2015,25(2):392-400.
    [16]聂明明,徐志锋,余欢,蔡长春,王振军.深冷处理对连续Cf/ZL301复合材料拉伸强度与残余应力的影响[J].中国有色金属学报,2017,27(9):1832-1837.NIE Ming-ming,XU Zhi-feng,YU Huan,CAI Chang-chun,WANG Zhen-jun.Effect of cryogenic treatment on tensile strength and residual stress of continuous Cf/ZL301composite[J].The Chinese Journal of Nonferrous Metals,2017,27(9):1832-1837.
    [17]HULL D,CLYNE T W.An introduction to composites materials[M].2nd ed.Cambridge:Cambridge University Press,1996.
    [18]聂明明,徐志锋,余欢,王振军,姚菁.基体合金对连续石墨纤维M40/Al复合材料纤维损伤及断裂机制的影响[J].复合材料学报,2016,33(12):2797-2806.NIE Ming-ming,XU Zhi-feng,YU Huan,WANG Zhen-jun,YAO Jing.Effects of matrix alloy on fiber damage and fracture mechanism of continuous M40 graphite fiber/Al composites[J].Acta Materiae Compositae Sinica,2016,33(12):2797-2806.
    [19]ZHOU Y,JIANG D,XIA Y.Tensile mechanical behavior of T300 and M40J fiber bundles at different strain rate[J].Journal of Materials Science,2001,36:919-922.
    [20]KAWABATA S.Measurement of the transverse mechanical properties of high-performance fibres[J].The Journal of The Textile Institute,1990,81(4):432-447.
    [21]周储伟,杨卫,方岱宁.内聚力界面单元与复合材料的界面损伤分析[J].力学学报,1999,31(3):372-376.ZHOU Chu-wei,YANG Wei,FANG Dai-ning.Cohesive interface element and interfacial damage analysis of composites[J].Acta Mechanica Sinica,1999,31(3):372-376.
    [22]WANG Z,XU Z,YU H,YAN Q.Fabrication of continuous nickel-coated carbon fiber reinforced aluminum matrix composites using low gas pressure infiltration method[J].Advanced Materials Research,2013,634/638:1914-1917.
    [23]LEE E,AMANO R,ROHATGI P.Metal matrix composite solidification in the presence of cooled fibers:Numerical simulation and experimental observation[J].Heat Mass Transfer,2007,43:741-748.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700