用户名: 密码: 验证码:
Glass and cellulose acetate fibers-supported boehmite nanosheets for bacteria adsorption
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Glass and cellulose acetate fibers-supported boehmite nanosheets for bacteria adsorption
  • 作者:N.V.Svarovskaya ; O.V.Bakina ; E.A.Glazkova ; A.N.Fomenko ; M.I.Lerner
  • 英文作者:N.V.Svarovskaya;O.V.Bakina;E.A.Glazkova;A.N.Fomenko;M.I.Lerner;Institute of Strength Physics and Materials Sciences of the Siberian Branch of the Russian Academy of Sciences;National Research Tomsk Polytechnic University;
  • 英文关键词:Nanosheets;;Microfibres;;Hybrid materials;;Bacterial adsorption
  • 中文刊名:ZKJY
  • 英文刊名:自然科学进展-国际材料(英文版)
  • 机构:Institute of Strength Physics and Materials Sciences of the Siberian Branch of the Russian Academy of Sciences;National Research Tomsk Polytechnic University;
  • 出版日期:2017-04-15
  • 出版单位:Progress in Natural Science:Materials International
  • 年:2017
  • 期:v.27
  • 基金:financially supported by Russian Science Foundation (Grant 14-23-00096);; the Program of Fundamental Research of the State Academies of Sciences for 2016-2020
  • 语种:英文;
  • 页:ZKJY201702018
  • 页数:7
  • CN:02
  • ISSN:10-1147/N
  • 分类号:116-122
摘要
In this work, in situ method of producing hybrid fibrous adsorbents in which boehmite nanosheets with high sorption properties formed on the surface of hydrophilic microfibres, such as cellulose acetate and glass fibre,was described. The boehmite nanosheets were fabricated by the reaction of composite Al N/Al nanoparticles with water at 60 °C. The synthesized samples were characterized by X-ray diffractometer, scanning, transmission electron microscopy, Fourier transform infrared spectrometer(FT-IR), zeta-potential and specific surface area analyzers. The introduction of microfibres into a diluted aqueous suspension of nanopowders causes heteroadagulation of the nanoparticles and accelerates their further transformation. This effect is most substantial with the glass microfibre, which is thought to have a higher concentration of surface groups capable of generating hydrogen bonds that act as heteroadagulation and nucleation centres. The experimental results showed that the morphology of the resultant hybrid fibrous adsorbents differed accordingly: the nanosheets were attached on-edge to the glass microfibre surface, while on the surface of the cellulose acetate microfibre,they were secured in the form of spherical "nanoflowers" of agglomerated nanosheets. The effect of the morphology of hybrid fibrous adsorbents on adsorption bacteria Escherichia coli was also investigated.
        In this work, in situ method of producing hybrid fibrous adsorbents in which boehmite nanosheets with high sorption properties formed on the surface of hydrophilic microfibres, such as cellulose acetate and glass fibre,was described. The boehmite nanosheets were fabricated by the reaction of composite Al N/Al nanoparticles with water at 60 °C. The synthesized samples were characterized by X-ray diffractometer, scanning, transmission electron microscopy, Fourier transform infrared spectrometer(FT-IR), zeta-potential and specific surface area analyzers. The introduction of microfibres into a diluted aqueous suspension of nanopowders causes heteroadagulation of the nanoparticles and accelerates their further transformation. This effect is most substantial with the glass microfibre, which is thought to have a higher concentration of surface groups capable of generating hydrogen bonds that act as heteroadagulation and nucleation centres. The experimental results showed that the morphology of the resultant hybrid fibrous adsorbents differed accordingly: the nanosheets were attached on-edge to the glass microfibre surface, while on the surface of the cellulose acetate microfibre,they were secured in the form of spherical "nanoflowers" of agglomerated nanosheets. The effect of the morphology of hybrid fibrous adsorbents on adsorption bacteria Escherichia coli was also investigated.
引文
[1]N.Horzum,M.Demir,M.Nairat,T.Shahwan,RSC Adv.3(2013)7828–7837.
    [2]P.Thanikaivelan,N.T.Narayanan,B.K.Pradhan,P.M.Ajayan,Sci.Rep.2(2012)1–7.
    [3]á.Caballero,J.Morales,L.Sánchez,Electrochem.Solid State Lett.8(2005)A464–A466.
    [4]P.L.Balan,J.P.Malval,R.Schneider,D.Le Nouen,D.J.Lougnot,Polymer 51(2010)1363–1369.
    [5]B.Samiey,C.H.Cheng,J.Wu,Materials 7(2014)673–726.
    [6]S.Ramesh,A.Sivasamy,K.Y.Rhee,S.J.Park,D.Hui,Composites B 75(2015)167–175.
    [7]P.X.Si,J.K.Wang,C.Zhao,H.Xu,K.Yang,W.Q.Wang,Polym.Adv.Technol.26(2015)1091–1096.
    [8]S.Liu,S.Sun,X.Z.You,Nanoscale 6(2014)2037–2045.
    [9]L.Ji,W.Chen,Z.Xu,S.Zheng,D.Zhu,J.Environ.Qual.42(2013)191–198.
    [10]G.Zhao,F.G.Zhao,J.Q.Sun,W.Wang,Y.Lu,W.S.Li,Q.Y.Chen,Carbon 94(2015)114–119.
    [11]R.K.Sonker,S.R.Sabhajeet,S.Singh,B.C.Yadav,Mater.Lett.152(2015)189–191.
    [12]S.L.Zhu,G.Q.Xie,X.J.Yang,Z.D.Cui,Mater.Res.Bull.48(2013)1961–1966.
    [13]Z.G.Wang,G.Cheng,Y.L.Liu,J.L.Zhang,D.H.Sun,J.Z.Ni,J.Mater.Chem.1(2013)4845–4854.
    [14]W.Lei,D.Portehault,D.Liu,S.Qin,Y.Chen,Nat.Commun.4(2013)1777–1783.
    [15]S.B.Khan,M.M.Rahman,H.M.Marwani,A.M.Asiri,K.A.Alamry,Nanoscale Res.Lett.8(2013)377–384.
    [16]J.P.Wang,T.Xia,C.L.Wu,J.Feng,F.C.Meng,Z.Shi,J.Meng,RCS Adv.2(2012)4220–4227.
    [17]S.Zanganeh,A.Kajbafvala,N.Zanganeh,M.S.Mohajerani,A.Lak,M.R.Bayati,H.R.Zargar,S.K.Sadrnezhaad,Appl.Phys.A.99(2010)317–321.
    [18]X.Yu,J.Yu,B.Cheng,M.Jaroniec,J.Phys.Chem.C 113(2009)17527–17535.
    [19]Y.Li,C.Peng,L.Li,P.Rao,J.Am.Ceram.Soc.97(2013)35–39.
    [20]W.Cai,J.Yu,S.Gu,M.Jaroniec,Cryst.Grow.Des.10(2010)3977–3982.
    [21]W.W.Zhang,D.S.Zhang,Y.Y.Chen,H.Lin,Fibers Polym.16(2015)503–509.
    [22]V.Vosmanska,K.Kolarova,S.Rimpelova,Z.Kolska,V.Svorcik,RSC Adv.5(2015)17690–17699.
    [23]S.Li,M.M.Lin,M.S.Toprak,D.K.Kim,M.Muhammed,Nano Rev.1(2010).http://dx.doi.org/10.3402/nano.v1i0.5214.
    [24]F.Paladini,R.A.Picca,M.C.Sportelli,N.Cioffi,A.Sannino,M.Pollini,Mater.Sci.Eng.C 52(2015)1–10.
    [25]H.E.Emam,S.Mowafi,H.M.Mashaly,M.Rehan,Carbohydr.Polym.110(2014)148–155.
    [26]A.Behzadnia,M.Montazer,M.M.Rad,Ultrason.Sonochem.27(2015)200–209.
    [27]Z.Y.Liu,J.J.Yan,J.Jie,Y.E.Miao,Y.P.Huang,T.X.Liu,Composites A 79(2015)217–223.
    [28]US Patent Nr.US7601262 sub–micron filter.Argonide Corporation,Sanford,Florida,USA,Issued:13.10.2009.
    [29]A.Kocjan,A.Dakskobler,T.Kosma?,Cryst.Growth Des.12(2012)1299–1307.
    [30]M.I.Lerner,O.V.Bakina,E.A.Glazkova,N.V.Svarovskaya,S.G.Psakhie,Inorg.Mater.Appl.Res.3(2011)53–58.
    [31]A.S.Lozhkomoev,E.A.Glazkova,O.V.Bakina,M.I.Lerner,I.Gotman,E.Y.Gutmanas,S.O.Kazantsev,S.G.Psakhie,Nanotechnology 27(2016)205603–205609.
    [32]O.V.Bakina,N.V.Svarovskaya,E.A.Glazkova,A.S.Lozhkomoev,E.G.Khorobraya,M.I.Lerner,Adv.Powder Technol.26(2015)1512–1519.
    [33]Z.D.Liu,J.Y.Li,J.Jiang,Z.N.Hong,R.K.Xu,Colloids Surf.B 110(2013)289–295.
    [34]M.I.Lerner,E.A.Glazkova,A.S.Lozhkomoev,N.V.Svarovskaya,O.V.Bakina,A.S.Pervikov,S.G.Psakhie,Powder Technol.295(2015)307–314.
    [35]K.Azzaoui,E.Mejdoubi,L.Lamhamdi,S.Zaoui,M.Berrabah,A.Elidrissi,B.Hammouti,M.M.G.Fouda,S.S.Al–Deyab,Carbohydr.Polym.115(2015)170–176.
    [36]Y.X.Zhang,Y.Jia,Z.Jin,X.Y.Yu,W.H.Xu,T.Luo,B.J.Zhu,J.H.Liu,X.J.Huang,Cryst.Eng.Comm.14(2012)3005–3007.
    [37]T.Reetz,B.Monch,M.Saupe,Aluminum nitride hydrolysis,Bauverlag,GMBH,69,1992,pp.464–465.
    [38]A.Kocjan,A.Dakskobler,T.Kosma?,Cryst.Grow.Des.12(2012)(1299–1037).
    [39]A.Kocjan,A.Dakskobler,K.Krnel,T.Kosma?,J.Eur.Ceram.Soc.31(2011)815–823.
    [40]G.E.Totten,D.S.Mac Kenzie,Handbook of Aluminum:Volume 2:Alloy Production and Materials 2,CRC Press,New York,2003,p.736.
    [41]P.Euzen,P.Raybaud,X.Krokidis,H.Toulhoat,J.L.Le Loarer,J.P.Jolivet,C.Froidefond,Alumina.In Handbook of Porous Solids;Schuth,F.;Sing.,K.S.W.;Weitkamp(Eds.),J.Wiley,Chichester,2002,pp.1591–677.
    [42]A.Kocjan,A.Dakskobler,B.Budi?,T.Kosma?,J.Am.Ceram.Soc.(2013)1032–1034.
    [43]B.Delmon,Introductionàla cinétique hétérogène,Technip,Paris,1969,p.258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700