用户名: 密码: 验证码:
NO对采后果实的保鲜作用及作用机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects and mechanisms of NO on postharvest fruit preservation
  • 作者:焦彩凤 ; 林琼 ; 柴奕丰 ; 段玉权
  • 英文作者:JIAO Cai-Feng;LIN Qiong;CHAI Yi-Feng;DUAN Yu-Quan;Institute of Food Science and Technology, Chinese Academy of Agricultural Science;
  • 关键词:NO ; 采后 ; 保鲜 ; 果实 ; 信号转导
  • 英文关键词:NO;;postharvest;;fresh;;fruit;;signal transduction
  • 中文刊名:SPAJ
  • 英文刊名:Journal of Food Safety & Quality
  • 机构:中国农业科学院农产品加工研究所;
  • 出版日期:2019-01-25
  • 出版单位:食品安全质量检测学报
  • 年:2019
  • 期:v.10
  • 基金:国家自然科学基金项目(31871862)~~
  • 语种:中文;
  • 页:SPAJ201902011
  • 页数:5
  • CN:02
  • ISSN:11-5956/TS
  • 分类号:58-62
摘要
一氧化氮(nitricoxide,NO)在采后果实保鲜中起着重要的作用,作为一种生物活性分子,能抑制果实贮藏过程的呼吸速率,并影响氧化物质代谢、糖代谢、膜脂过氧化和功能成分积累等,从而控制果蔬的生长、成熟和抗病性。本文综述了NO对采后果实保鲜的作用,包括乙烯释放和呼吸速率、氧化物质代谢、糖代谢、膜脂过氧化和功能成分积累等方面;并探讨了可能参与NO发挥保鲜作用的下游信使,包括过氧化氢(hydrogen peroxide,H_2O_2)、促分裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)、磷脂酶D(phospholipase D, PLD)、Ca~(2+)和环鸟苷酸(guanosine 3’,5’-cyclic phosphate, cGMP)等,以期为NO应用于采后果实保鲜提供理论依据。后续需进一步探讨其他参与NO发挥保鲜作用的下游信使,并揭示它们所组成的信号转导通路。
        Nitric oxide(NO) plays an important role in the preservation of postharvest fruits. As a bioactive molecule, NO can inhibit the respiration rate of fruit during storage and affect oxidative metabolism, glucose metabolism, membrane lipids, oxidation and accumulation of functional ingredients, etc., thereby controlling the growth, maturation and disease resistance of fruits and vegetables. This paper reviewed the effects of NO on the preservation of postharvest fruits, including ethylene release and respiration rate, oxidative metabolism, glucose metabolism, membrane lipid peroxidation and accumulation of functional components, and discussed downstream messengers that may be involved in NO preservation, including hydrogen peroxide(H_2O_2), mitogen-activated protein kinase(MAPK), phospholipase D(PLD), Ca~(2+) and cyclic guanosine monophosphate(guanosine 3', 5'-cyclic phosphate, cGMP), etc., in order to provide a theoretical basis for the application of NO in postharvest fruit preservation. Subsequent further exploration of other downstream messengers involved in NO preservation plays a role in revealing their signal transduction pathways.
引文
[1]Shan TM,Jin P,Zhang Y,et al.Exogenous glycine betaine treatment enhances chilling tolerance of peach fruit during cold storage[J].Postharv Biol Technol,2016,114(1):104-110.
    [2]Beligni MV,Lamattina L.Nitric oxide stimulates seed germination and de-etiolation,and inhibits hypocotyl elongation,three light-inducible responses in plants[J].Planta,2000,210(2):215-221.
    [3]Robertson JA,Meredith FI,Horvat RJ,et al.Effect of cold storage and maturity on the physical and chemical characteristics and volatile constituents of peaches(Cv.Cresthaven)[J].J Agric Food Chem,1990,38(3):53-70.
    [4]Lurie S,Crisosto CH.Chilling injury in peach and nectarine[J].Postharv Biol Technol,2005,37(3):195-208.
    [5]Brummell DA,Cin VD,Lurie S,et al.Cell wall metabolism during the development of chilling injury in cold-stored peach fruit:Association of mealiness with arrested disassembly of cell wall pectins[J].J Exp Botan,2004,55(405):2041-2052.
    [6]Luza JG,Van GR,Polito VS,et al.Chilling injury in peaches:Acytochemical and ultrastructural cell wall study[J].J Am Soc Hortic Sci,1992,117(1):114-118.
    [7]Cheng GP,Yang E,Lu WJ.Effect of nitric oxide on ethylene synthesis and softening of banana fruit slice during ripening[J].J Agric Food Chem,2009,57(13):5799-5804.
    [8]Franciscob FB,Paloma SB,Monika V,et al.Effects of a pretreatment with nitric oxide on peach(Prunus persica L.)storage at room temperature[J].Eur Food Res Technol,2008,227(6):1599-1611.
    [9]Han S,Cai HF,An XJ,et al.Effect of nitric oxide on sugar metabolism in peach fruit(cv.Xiahui 6)during cold storage[J].Postharv Biol Technol,2018,(142):72-80.
    [10]Li XP,Wu B,Guo Q,et al.Effects of nitric oxide on postharvest quality and soluble sugar content in papaya Fruit during ripening[J].J Food Proc Preserv,2014,38(1):591-599.
    [11]Ma CM,Sun Z,Zhou J,et al.Effects of exogenous nitric oxide on Krebs cycle-associated enzyme activities in Feicheng peach fruit[C].The 3rd Conference on Key Technology of Horticulture,2011:275-283.
    [12]Kang RY,Zhang L,Jiang L,et al.Effect of postharvest nitric oxide treatment on the proteome of peach fruit during ripening[J].Postharv Biol Technol,2016,112(7):277-289.
    [13]Zhu SH,Zhou J.Effects of nitric oxide on fatty acid composition in peach fruits during storage[J].J Agric Food Chem,2006,54(25):9447-9452.
    [14]Li GJ,Zhu SH,Wu WX,et al.Exogenous nitric oxide(NO)induces disease resistance against Monilinia fructicola through activating the phenylpropanoid pathway in peach fruit[J].J Sci Food Agric,2016,97(9):3030-3038.
    [15]Ruan JZ,Li MY,Jin HH,et al.UV-B irradiation alleviates the deterioration of cold-stored mangoes by enhancing endogenous nitric oxide levels[J].Food Chem,2015,(169):417-423.
    [16]Xua MJ,Dong JF,Zhang M,et al.Cold-induced endogenous nitric oxide generation plays a role in chilling tolerance of loquat fruit during postharvest storage[J].Postharv Biol Technol,2012,65(3):5-12.
    [17]Dong JF,Yu Q,Lu L,et al.Effect of yeast saccharide treatment on nitric oxide accumulation and chilling injury in cucumber fruit during cold storage[J].Postharv Biol Technol,2012,68(2):1-7.
    [18]Luza JG,Van GR,Polito VS,et al.Chilling injury in peaches:Acytochemical and ultrastructural cell wall study[J].J Am Soc Hortic Sci,1992,117(1):114-118.
    [19]Zhou HW,Lurie S,Lers A,et al.Delayed storage and controlled atmosphere storage of nectarines:two strategies to prevent woolliness[J].Postharv Biol Technol,2000,18(2):133-141.
    [20]Crisosto CH,Labavitch JM.Developing a quantitative method to evaluate peach(Prunus persica)flesh mealiness[J].Postharv Biol Technol,2002,25(2):151-158.
    [21]Manganaris GA,Vasilakakis M,Diamantidis G,et al.Cell wall physicochemical aspects of peach fruit related to internal breakdown symptoms[J].Postharv Biol Technol,2006,39(1):69-74.
    [22]Ortiz A,Echeverría G,Graell J,et al.Overall quality of'rich lady'peach fruit after air or CA storage.The importance of volatile emission[J].LWT-Food Sci Technol,2009,42(9):1520-1529.
    [23]Tossi V,Lamattina L,Cassia R.An increase in the concentration of abscisic acid is critical for nitric oxide-mediated plant adaptive responses to UV-B irradiation[J].New Phytol,2010,181(4):871-879.
    [24]Bei F,Lin S,Liu KL,et al.Interaction between nitric oxide and hydrogen peroxide in postharvest tomato resistance response to Rhizopus nigricans[J].J Sci Food Agric,2010,88(7):1238-1244.
    [25]Zhang AY,Jiang MY,Zhang JH,et al.Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves[J].New Phytol,2007,175(1):36-50.
    [26]Brovelli EA,Brecht JK,Sherman WB,et al.Quality of fresh-market melting-and nonmelting-flesh peach genotypes as affected by postharvest chilling[J].J Food Sci,2010,63(4):730-733.
    [27]Zhou HW,Ben A,Lurie S.Pectin esterase,polygalacturonase and gel formation in peach pectin fractions[J].Phytochemistry,2000,55(3):191-195.
    [28]Wink DA,Hines HB,Cheng RYS,et al.Nitric oxide and redox mechanisms in the immune response[J].J Leukocyt Biol,2011,89(6):873.
    [29]Klessig DF,Durner J,Noad R,et al.Nitric oxide and salicylic acid signaling in plant defense[J].Proceed Na Acad Sci US,2000,97(16):8849-8855.
    [30]Gonorazky G,Distéfano AM,García-Mata C,et al.Phospholipases in nitric oxide-mediated plant signaling[M].Spring Berl Heidelberg,2014.
    [31]Zaharah SS,Singh Z.Postharvest nitric oxide fumigation alleviates chilling injury,delays fruit ripening and maintains quality in cold-stored‘Kensington Pride’mango[J].Postharv Biol Technol,2011,60(3):202-210.
    [32]Zhang T,Che F,Zhang H,et al.Effect of nitric oxide treatment on chilling injury,antioxidant enzymes and expression of the CmCBF1 and CmCBF3genes in cold-stored Hami melon(Cucumis melo L.)fruit[J].Postharv Biol Technol,2017,(127):88-98.
    [33]Zhu LQ,Zhou J,Zhu SH.Effect of a combination of nitric oxide treatment and intermittent warming on prevention of chilling injury of‘Feicheng’peach fruit during storage[J].Food Chem,2010,121(1):165-170.
    [34]Ogundiwin EA,MartíC,Forment J,et al.Development of chill peach genomic tools and identification of cold-responsive genes in peach fruit[J].Plant Mol Biol,2008,68(4-5):379-397.
    [35]Nilo R,Saffie C,Lilley K,et al.Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis(DIGE)[J].Bmc Genom,2010,11(1):43.
    [36]Bustamante CA,Brotman Y,Monti LL,et al.Differential lipidome remodelling during postharvest of peach varieties with different susceptibility to chilling injury[J].Phys Plantar,2017,163(1):2-17.
    [37]Puig CP,Dagar A,Ibanez CM,et al.Pre-symptomatic transcriptome changes during cold storage of chilling sensitive and resistant peach cultivars to elucidate chilling injury mechanisms[J].BMC Genom,2015,16(1):245.
    [38]Ramani S,Chelliah J.UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures[J].BMC Plant Biol,2006,7(1):61.
    [39]Gonzalez B,Marina A,Ulm R.ATR and MKP1 play distinct roles in response to UV-B stress in Arabidopsis[J].Plant J Cell Mol Biol,2013,73(6):1034-1043.
    [40]Zheng YY,Yang Y,Liu C,et al.Inhibition of Sl MPK1,SlMPK2,and SlMPK3 disrupts defense signaling pathways and enhances tomato fruit susceptibility to Botrytis cinerea[J].J Agric Food Chem,2015,63(22):5509-5517.
    [41]Zheng YY,Hong H,Chen L,et al.LeMAPK1,LeMAPK2,and LeMAPK3are associated with nitric oxide-induced defense response against Botrytis cinerea in the Lycopersicon esculentum fruit[J].J Agric Food Chem,2014,62(6):1390-1396.
    [42]Sun J,You XR,Li L,et al.Effects of a phospholipase D inhibitor on postharvest enzymatic browning and oxidative stress of litchi fruit[J].Postharv Biol Technol,2011,62(3):288-294.
    [43]An ZF,Zhou CJ.Light induces lettuce seed germination through promoting nitric oxide production and phospholipase D-derived phosphatidic acid formation[J].Afr J Bot,2016,(108):416-422.
    [44]Hu W,Tie WW,Ou WJ,et al.Crosstalk between calcium and melatonin affects postharvest physiological deterioration and quality loss in cassava[J].Postharv Biol Technol,2018,(140):42-49.
    [45]Durner J,Wendehenne D,Klessig DF.Defense gene induction in tobacco by nitric oxide,cyclic GMP,and cyclic ADP-ribose[J].PNatl Acad Sci USA,1998,95(17):10328-10333.
    [46]Misra AN,Misra M,Singh R.Nitric oxide biochemistry,mode of action and signaling in plants[J].J Med Plant Res,2010,4(25):2729-2739.
    [47]Dubovskaya LV,Bakina YS,Kolesneva EV,et al.c GMP-dependent ABA-induced stomatal closure in the ABA-insensitive Arabidopsis mutant abi1-1[J].New Phytol,2011,191(1):57-69.
    [48]Pasqualini S,Meier S,Gehring C,et al.Ozone and nitric oxide induce c GMP-dependent and-independent transcription of defence genes in tobacco[J].New Phytol,2010,181(4):860-870.
    [49]Bowler C,Neuhaus G,Yamagata H,et al.Cyclic GMP and calcium mediate phytochrome phototransduction[J].Cell,1994,77(1):73-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700