用户名: 密码: 验证码:
氨基三乙酸对污染土壤中镉活化迁移的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Aminotriacetic Acid on Cadmium Activation and Migration in Contaminated Soil
  • 作者:杨森 ; 谢先军 ; 肖紫怡 ; 刘红杏
  • 英文作者:Yang Sen;Xie Xianjun;Xiao Ziyi;Liu Hongxing;School of Environmental Studies,China University of Geosciences(Wuhan);State Key Laboratory of Biogeochemical Environmental Geology,China University of Geosciences(Wuhan);
  • 关键词:土壤 ; 镉污染 ; 批实验 ; 活化迁移 ; 影响机理
  • 英文关键词:soil;;cadmium contamination;;batch experiment;;activation and migration;;mechanism
  • 中文刊名:DZKQ
  • 英文刊名:Geological Science and Technology Information
  • 机构:中国地质大学(武汉)环境学院;中国地质大学(武汉)生物地质环境地质国家重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:地质科技情报
  • 年:2019
  • 期:v.38;No.185
  • 基金:国家自然科学基金项目(41372254);; 湖北省重大科技创新项目(2016ACA167)
  • 语种:中文;
  • 页:DZKQ201902028
  • 页数:6
  • CN:02
  • ISSN:42-1240/P
  • 分类号:249-254
摘要
为了探究氨基三乙酸(NTA)对污染土壤中镉活化迁移的影响,采用批实验研究了淋洗前后镉形态的变化、土壤有机质含量的变化以及镉的活化量与NTA浓度和pH值的关系。通过傅立叶红外光谱仪(FTIR)分析了淋洗前后土壤颗粒官能团的组成,并采用SEM对淋洗前后土壤颗粒表面进行了表征。结果表明镉的活化量主要受到NTA浓度和淋洗液pH值的影响。一方面镉的活化量随着NTA的输入浓度增大而增大,且与土壤实际结合NTA量变化趋势一致,土壤颗粒由淋洗前的羟基官能团变为淋洗后的酯基官能团,进而降低了土壤颗粒对镉的固定;另一方面淋洗过程中通过H~+与镉之间的交换反应,导致镉的活化,同时交换反应消耗质子会使得淋洗液pH值升高,在较高的pH值条件下镉会形成Cd(OH)_2沉淀而被部分固定。
        Batch leaching experiments were conducted to understand the leaching behavior of cadmium from using Cd-contaminated soil using aminotriacetic acid(NTA). The variation of cadmium speciation and organic matter content in soil were studied before and after the leaching experiment. The relationship between the amount of leached Cd and the concentration of NTA and the pH values of the leachate were also analyzed. Then the FTIR and SEM analysis were conducted to study the variation of the functional groups combined with the soil particles before and after leaching. The experiment results indicate that the leached Cd from the soil is closely associated with the concentration of NTA and the pH value of leachate. The total amount of leached Cd increased with the increase of the concentration of NTA and changed with the amount of NTA combined onto the soil particles. The change from hydroxy functional groups to the ester based functional groups combined with the soil particles after leaching results in the mobilization of Cd from contaminated soil. During the leaching experiment, the exchange reaction between H~+ and Cd promoted the mobilization of Cd and increases the pH value of eluent as well. Under the high pH condition, some amount of Cd precipitated as Cd(OH)_2 and re-immobilized in soil particles.
引文
[1] 李婧,周艳文,陈森,等.我国土壤镉污染现状、危害及其治理方法综述[J].安徽农学通报,2015,21(24):104-107.
    [2] 陈能场,郑煜基,何晓峰,等.《全国土壤污染状况调查公报》探析[J].农业环境科学学报,2017, 36(9):1689-1692.
    [3] 闫帅成,张克峰,刘雷,等.土壤中镉的形态及其影响因素研究进展[J].中国人口·资源与环境,2016,26(11):354-358.
    [4] 陈媛.土壤中镉及镉的赋存形态研究进展[J].广东微量元素科学,2007,14(7):7-13.
    [5] Tessier A, Campbell P G C, Bisson M.Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical Chemistry,1979, 51(7):844-851.
    [6] 刘思齐.镉污染土壤化学淋洗研究[D].重庆:重庆大学, 2016.
    [7] Giannis A, Nikolaou A, Pentari D, et al.Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils[J].Environmental Pollution,2009,157(12):3379-3386.
    [8] Bucheli-Witschel M, Egli T.Environmental fate and microbial degradation of aminopolycarboxylic acids[J].FEMS Microbiol.Rev.,2001,25(1):69-106.
    [9] 王瑞琨.用电位法测定土壤pH值[J].山西化工,2018,38(3):64-65,76.
    [10] Wang J, Zhu L, Wang Y, et al.A comparison of different methods for determining the organic and inorganic carbon content of lake sediment from two lakes on the Tibetan Plateau[J].Quaternary International,2012, 250(2):49-54.
    [11] Frentiu T, Ponta M, Hategan R.Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil[J].Chemistry Central Journal,2013, 7(1):1-10.
    [12] Barth H G.Modern methods of particle size analysis[M].New York:John Wiley and Sons,1984.
    [13] Knadel M, Gislum R, Hermansen C, et al.Comparing predictive ability of laser-induced breakdown spectroscopy to visible near-infrared spectroscopy for soil property determination[J].Biosystems Engineering,2017,156:157-172.
    [14] Ma X Z, Hao X Y, Chen X L, et al.Study on biochar properties analysis with scanning electron microscope-energy dispersive X-ray spectroscopy(SEM-EDX)[J].Spectorscopy and Spectral Analysis,2016,36(6):1670-1673.
    [15] Zeng F, Ali S, Zhang H, et al.The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J].Environmental Pollution,2011,159(1):84-91.
    [16] Fan W, Jia Y, Li X, et al.Phytoavailability and geospeciation of cadmium in contaminated soil remediated by Rhodobacter sphaeroides[J].Chemosphere,2012, 88(6):751-756.
    [17] Filipovi? L, Romi? M, Romi? D, et al.Organic matter and salinity modify cadmium soil (phyto) availability[J].Ecotoxicol.Environ.Saf.,2017,147:824-831.
    [18] Butt D, Dowling K, Vinden P.Assessment of cadmium distribution in some australian krasnozems by sequential extraction[J].Water Air & Soil Pollution,2008, 190(1/4):157-169.
    [19] Margenot A J, Calderón F J, Goyne K W, et al.IR spectroscopy soil analysis applications[J].Encyclopedia of Spectroscopy & Spectrometry,2017:448-454.
    [20] Marchi G,Vilar C C,O Connor G,et al.Surface complexation modeling in variable charge soils:Prediction of cadmium adsorption[J].Revista Brasileira De Ciência Do Solo,2015,39(5):1395-1405.
    [21] Wang S, Huang D, Zhu Q, et al.Speciation and phytoavailability of cadmium in soil treated with cadmium-contaminated rice straw[J].Environmental Science and Pollution Research,2015, 22(4):2679-2686.
    [22] Evangelou M W, Daghan H, Schaeffer A.The influence of humic acids on the phytoextraction of cadmium from soil[J].Chemosphere,2004,57(3):207-213.
    [23] Bradl H B.Adsorption of heavy metal ions on soils and soils constituents[J].Journal of Colloid and Interface Science,2004,277(1):1-18.
    [24] Jardine P M, Mccarthy J F, Weber N L.Mechanisms of dissolved organic carbon adsorption on soil[J].Soil Sci.Soc.Am.J.,1989,53(5):1378-1385.
    [25] Song Y, Ammami M T, Benamar A, et al.Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment[J].Environ.Sci.Pollut.Res.Int.,2016,23(11):10577-10586.
    [26] Hooda P S, Alloway B J.Cadmium and lead sorption behaviour of selected English and Indian soils[J].Geoderma,1998,84(S1/3):121-134.
    [27] Kim M J.A study on the adsorption characteristics of cadmium and zinc onto acidic and alkaline soils[J].Environmental Earth Sciences,2014,72(10):3981-3990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700