用户名: 密码: 验证码:
改进的CST和面向CAD建模的民机机翼参数化方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Modified CST Representation Method and CAD Oriented Wing Parameterization of Civil Aircrafts
  • 作者:薛帮猛 ; 邓捷
  • 英文作者:XUE Bang-meng;DENG Jie;Beijing Key Laboratory of Simulation Technology for Civil Aircraft Design,Beijing Aeronautical Science and Technology Research Institute of COMAC;
  • 关键词:参数化 ; 类函数/形函数变换 ; 超临界翼型 ; 民机机翼 ; CAD建模
  • 英文关键词:parameterization;;class-shape-transformation;;supercritical airfoil;;civil aircraft wing;;CAD modeling
  • 中文刊名:HKJJ
  • 英文刊名:Aeronautical Computing Technique
  • 机构:中国商飞北京民用飞机技术研究中心民用飞机设计数字仿真北京市重点实验室;
  • 出版日期:2018-07-25
  • 出版单位:航空计算技术
  • 年:2018
  • 期:v.48;No.205
  • 基金:国家级重点项目资助
  • 语种:中文;
  • 页:HKJJ201804004
  • 页数:5
  • CN:04
  • ISSN:61-1276/TP
  • 分类号:15-19
摘要
在民机机翼设计中发现Kulfan的类函数/形函数变换(CST)参数化方法拟合前缘形状复杂的超临界翼型时精度不理想,提出了一种改进方法。CST参数化方法中,翼型型面由类型函数与Bernstein多项式各项相乘后的翼型分量函数(简称:翼型分量)叠加而成,每个翼型分量在峰值位置附近对翼型有较强的控制作用,这些峰值位置均匀分布于[0,1]区间。分析表明:局部自由度不足,是导致CST方法在关键位置修形能力不足的重要原因。通过对Bernstein多项式进行坐标变换,使翼型分量的峰值位置分布向前缘集中,达到了改善翼型前缘附近表达能力的效果。在对RAE5214和某民机工程使用超临界翼型的拟合和修形设计应用中,对比拟合误差证明改进后的CST参数化方法在相同阶数下有更好的拟合精度,在前缘附近的修形能力更强。在机翼三维参数化方法方面,应用类似CAD建模过程的展向分段插值,得到了最接近CAD模型的机翼参数化表面。
        A modification of Kulfan's class-shape-transformation(CST) shape representation method aiming at improving its local control capability near leading edge of airfoil is presented. The shape function of original CST is based on Bernstein polynomials,each component of which has the best control ability around its peak value position,and all those positions distribute uniformly on[0,1]. One of the important reasons why CST does not has enough local control ability is lack of degrees within key region,e. g. nose of supercritical airfoil of civil aircrafts. The peak positions of the component functions of the shape function are concentrated to the leading edge by means of coordinate transformation of Bernstein polynomials,which improved CST's representation ability near the leading edge of airfoils. In the application of matching supercritical airfoils with blunt nose,RAE5214 and another foil having civil aircrafts engineering background,the fitting errors of the modified CST method turn to meet wind tunnel model manufacture tolerance in contrast to the original CST. Also,a redesign test of local modification near leading edge of an airfoil confirms that the modified CST method has better local control capability. For the three dimensional representation,a CAD oriented wing parameterization method is set up by the piecewise continuous spanwise interpolation,and the parameterized shape of a practical wing can approximate the CAD shape well enough in geometry.
引文
[1]David B,Nick C.CST Transonic Optimization using Tranair++[R].Reno,Nevada:AIAA,2008.
    [2]Lane K A,David D M.Inverse Airfoil Design Utilizing CST Parameterization[R].Orlando,Florida:AIAA,2010.
    [3]关晓辉,李占科,宋笔锋.CST气动外形参数化方法研究[J].航空学报,2012,33(4):625-633.
    [4]卜月鹏,宋文萍,韩忠华,等.基于CST参数化方法的翼型气动优化设计[J].西北工业大学学报,2013,33(4):829-836.
    [5]David D M.Creating Exact Bezier Representations of CST Shapes[R].San Diego,CA:AIAA,2013.
    [6]Zhu Feng,Qin Ning.Intuitive Class/Shape Function Parameterization for Airfoils[J].AIAA Journal,2014,52(1):17-25.
    [7]Craig C M,Darcy L A,Joseph A,et al.Parametric Geometry Model for Design Studies of Tailless Supersonic Aircraft[J].Journal of Aircraft,2014,51(5):1455-1466.
    [8]Ceze M.A Study of the CST Parameterization Characteristics[R].San Antonio,Texas:AIAA,2009.
    [9]Stephen P,Andras S.Application-Specific Class Functions for the Kulfan Transformation of Aiffoils[R].Fort Worth,Texas:AIAA,2010.
    [10]Michiel S,Michel T,Mark V,et al.Development and Implementation of Novel Parametrization Techniques for Multidisciplinary Design Initialization[R].Orlando,Florida:AIAA,2010.
    [11]Michiel H S,Michel J L V.Extension to the Class-ShapeTransformation Method Based on B-Splines[J].AIAA Journal,2011,49(4):780-790.
    [12]Michiel H S,Michel J L V.Adjoint Optimization of a Wing Using the Class-Shape-Refinement-Transformation Method[J].Journal of Aircraft,2012,49(4):1091-1100.
    [13]Guan Xiaohui.Supersonic Wing–Body Two-Level Wave Drag Optimization Using Extended Far-Field CompositeElement Methodology[J].AIAA Journal,2014,52(5):981-990.
    [14]Erik D O.Three-Dimensional Piecewise-continuous CST of Wings[R].Dallas,TX:AIAA,2015.
    [15]Su Hua,Gu Liangxian,Gong Chunlin.Research on Geometry Modeling Method Based on Three-Dimensional CST Parameterization Technology[R].Dallas,TX:AIAA,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700