用户名: 密码: 验证码:
DFT研究负载于ZrO_2(111)上Ni簇的CO甲烷化:微粒尺寸的影响(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Insight into the Effect of Particle Sizes for Ni Clusters Supported on ZrO_2(111) During CO Methanation:A DFT Study
  • 作者:智翠梅 ; 章日光 ; 凌丽霞 ; 王宝俊
  • 英文作者:ZHI Cuimei;ZHANG Riguang;LING Lixia;WANG Baojun;Key Laboratory of Coal Science and Technology,Ministry of Education and Shanxi Province,Taiyuan University of Technology;College of Chemistry and Bioengineering,Taiyuan University of Science and Technology;
  • 关键词:CO甲烷化 ; 活性 ; 选择性 ; Ni_4 ; Ni_(13) ; 载体ZrO_2(111)面
  • 英文关键词:CO methanation;;activity;;selectivity;;Ni_4;;Ni_(13);;support ZrO_2(111)
  • 中文刊名:MTZH
  • 英文刊名:Coal Conversion
  • 机构:太原理工大学煤科学与技术教育部和山西省重点实验室;太原科技大学化学与生物工程学院;
  • 出版日期:2017-07-15
  • 出版单位:煤炭转化
  • 年:2017
  • 期:v.40;No.158
  • 基金:National Nature Science Foundation of China(21276003,21476155,21276171);; the Natural Science Foundation of Shanxi Province(2014011012-2)
  • 语种:英文;
  • 页:MTZH201704012
  • 页数:13
  • CN:04
  • ISSN:14-1163/TQ
  • 分类号:38-50
摘要
采用量子化学密度泛函理论(DFT)研究了负载型催化剂Ni/ZrO_2(111)的CO甲烷化活性和选择性.结果表明:CO→CHO→CH_2O→CH_2→CH_3→CH_4是Ni_4-ZrO_2(111)面上CH_4形成的有利路径,CO→HCO→CH→CH_2→CH_3→CH_4是Ni_(13)-ZrO_2(111)面上CH_4形成的有利路径,这两种催化剂具有相似的CH_4生成活性,Ni_(13)-ZrO_2(111)比Ni_4-ZrO_2(111)具有明显高的CH_4选择性.Ni_4·ZrO_2(111)能较好地抑制积碳.
        The density functional theory(DFT)method has been used to reveal the underlying mechanism of Ni cluster supported on ZrO_2(111)as well as the activity and selectivity of CO methanation.CO→HCO→CH_2O→CH_2→CH_3→CH_4is mainly responsible for CH_4 formation on Ni_4-ZrO_2(111),while CH_4 is mainly formed via the path of CO→ HCO→CH→CH_2 →CH_3 →CH_4 on Ni_(13)-ZrO_2(111).Ni_4-ZrO_2(111)and Ni_(13)-ZrO_2(111)exhibit similar activity for CH_4 formation with the free energy barrier of 2.38 eV and 2.26 eV,respectivley.In addition,Ni_(13)-ZrO_2(111)displays a remarkable high selectivity to CH_4 comparing with Ni_4-ZrO_2(111).Moreover,Ni_4-ZrO_2(111)exhibits high resistance to carbons,while Ni_(13)-ZrO_2(111)surface is much sensitively to form deposition carbon.
引文
[1]TAO Miao,MENG Xin,LYU Yuhao,et al.Effect of Impregnation Solvent on Ni Dispersion and Catalytic Properties of Ni/SBA-15for CO Methanation Reaction[J].Fuel,2016,165(4):289-297.
    [2]MA Shengli,TAN Yisheng,HAN Yizhuo.Water-gas Shift Coupling with Methanation over MOx Modified Nanorod-NiO/γ-Al2O3 Catalysts[J].Journal of Industrial and Engineering Chemistry,2011,17(4):723-726.
    [3]GUO Cuili,WU Yuanyuan,QIN Hongyun,et al.CO Methanation over ZrO2/Al2O3Supported Ni Catalysts:A Comprehensive Study[J].Fuel Processing Technology,2014,124:61-69.
    [4]ZHANG Junfeng,BAI Yunxing,ZHANG Qingde,et al.Low-temperature Methanation of Syngas in Slurry Phase over Zrdoped Ni/γ-Al2O3Catalysts Prepared Using Different Methods[J].Fuel,2014,132:211-218.
    [5]ZENG Yan,MA Hongfang,ZHANG Haitao,et al.Highly Efficient NiAl2O4-free Ni/γ-Al2O3Catalysts Prepared by Solution Combustion Method for CO Methanation[J].Fuel,2014,137:155-163.
    [6]LU Huailiang,YANG Xuzhuang,GAO Guanjun,et al.Mesoporous Zirconia-modified Clays Supported Nickel Catalysts for COand CO2 Methanation[J].International Journal of Hydrogen Energy,2014,39(33):18894-18907.
    [7]MENG Fanhui,LI Zhong,JI Fangkui,et al.Effect of ZrO2on Catalyst Structure and Catalytic Methanation Performance over Ni-based Catalyst in Slurry-bed Reactor[J].International Journal of Hydrogen Energy,2015,40(29):8833-8843.
    [8]RAZZAQ R,ZHU Hongwei,JIANG Li,et al.Catalytic Methanation of CO and CO2in Coke Oven Gas over Ni-Co/ZrO2-CeO2[J].Industrial&Engineering Chemistry Research,2013,52(6):2247-2256.
    [9]XAVIER K O,SREEKALA R,RASHID K K A,et al.Doping Effects of Cerium Oxide on Ni/Al2O3 Catalysts for Methanation[J].Catalysis Today,1999,49(1):17-21.
    [10]RAHMANI Soudabeh,REZAEI Mehran,MESHKANI Fereshteh.Preparation of Promoted Nickel Catalysts Supported on Mesoporous Nanocrystalline Gamma Alumina for Carbon Dioxide Methanation Reaction[J].Journal of Industrial and Engineering Chemistry,2014,20(6):4176-4182.
    [11]LIU Jiao,YU Jian,SU Fabing,et al.Intercorrelation of Structure and Performance of Ni-Mg/Al2O3Catalysts Prepared with Different Methods for Syngas Methanation[J].Catalysisence&Technology,2014,4(2):472-481.
    [12]TRUEBA Monica,TRASATTI Stefano P.γ-Alumina as a Support for Catalysts:A Review of Fundamental Aspects[J].Cheminform,2005,36(44):3393-3403.
    [13]BARRIENTOS J,LUALDI M,SUREZ PARS R,et al.CO Methanation over TiO2-supported Nickel Catalysts:A Carbon Formation Study[J].Applied Catalysis A:General,2015,502(29):276-286.
    [14]ZKARA-AYDINOGLU Seyma,ZENSOY Emrah,ERHAN AKSOYLU A.The Effect of Impregnation Strategy on Methane Dry Reforming Activity of Ce Promoted Pt/ZrO2[J].International Journal of Hydrogen Energy,2009,34(24):9711-9722.
    [15]IRIONDO A,CAMBRA J F,GEMEZ M B,et al.Effect of ZrO2 Addition on Ni/Al2O3 Catalyst to Produce H2from Glycerol[J].International Journal of Hydrogen Energy,2012,37(8):7084-7093.
    [16]HUANG Yanhui,WANG Jijie,LIU Zhiming,et al.Highly Efficient Ni-ZrO2 Catalyst Doped with Yb2O3 for COMethanation of CO and CO2[J].Applied Catalysis A:General,2013,466(8):300-306.
    [17]TAKENAKA SAKAE,SHIMIZU TORU,OTSUKA KIYOSHI.Complete Removal of Carbon Monoxide in Hydrogen-rich Gas Stream through Methanation over Supported Metal Catalysts[J].International Journal of Hydrogen Energy,2004,29(10):1065-1073.
    [18]GAO Jiajian,JIA Chunmiao,ZHANG Meiju,et al.Effect of Nickel Nanoparticle Size in Ni/α-Al2O3on CO Methanation Reaction for the Production of Synthetic Natural Gas[J].Catalysis Science&Technology,2013,3(8):2009-2015.
    [19]WANG Yang,ZHU Mingyuan,KANG Lihua,et al.Neutral Aun(n=3-10)Clusters Catalyze Acetylene Hydrochlorination:A Density Functional Theory Study[J].RSC Advances,2014,4(72):38466-38473.
    [20]KRESSE G,FURTHMLLER J.Efficient Iterative Schemes for Ab Initio Total-energy Calculations Using A Plane-wave Basis Set[J].Physical Review B:Condensed Matter,1996,54(16):11169-11186.
    [21]KRESSE G,HAFNER J.Ab Initio Molecular Dynamics for Liquid Metals[J].Physical Review B:Condensed Matter,1993,47(1):558-561.
    [22]KRESSE G,JOUBERT D.From Ultrasoft Pseudopotentials to the Projector Augmented-wave Method[J].Physical Review B:Condensed Matter,1999,59(3):1758-1775.
    [23]METHFESSEL M,PAXTON A T.High-precision Sampling for Brillouin-zone Integration in Metals[J].Physical Review B:Condensed Matter,1989,40(6):3616-3621.
    [24]MONKHORST H J,PACK J D.Special Points for Brillouin-zone Integrations[J].Physical Review B:Condensed Matter,1976,16(4):5188-5192.
    [25]SHEPPARD D,XIAO P,CHEMELEWSKI W,et al.A Generalized Solid-state Nudged Elastic Band Method[J].Journal of Chemical Physics,2012,136(7):074103-1-8.
    [26]SHEPPARD D,TERRELL R,HENKELMANA G.Optimization Methods for Finding Minimum Energy Paths[J].Journal of Chemical Physics,2008,128(13):134106-134110.
    [27]OLSEN R A,KROES G J,HENKELMAN G,et al.Comparison of Methods for Finding Saddle Points Without Knowledge of the Final States[J].Journal of Chemical Physics,2004,121(20):9776-9792.
    [28]KAPUR NEETI,HYUN JANGSUK,SHAN BIN,et al.Ab Initio Study of CO Hydrogenation to Oxygenates on Reduced Rh Terraces and Stepped Surfaces[J].Journal of Chemical Physics,2010,114(22):10171-10182.
    [29]CAO Xiaoming,BURCH ROBBIE,HARDACRE CHRIS,et al.An Understanding of Chemoselective Hydrogenation on Crotonaldehyde over Pt(111)in the Free Energy Landscape:the Microkinetics Study Based on First-principles Calculations[J].Catalysis Today,2011,165(1):71-79.
    [30]ZHI Cuimei,ZHANG Riguang,WANG Baojun.Comparative Studies About CO Methanation over Ni(211)and Zr-modified Ni(211)Surfaces:Qualitative Insight into the Effect of Surface Structure and Composition[J].Molecular Catalysis,2017,438:1-14.
    [31]ANDERSSON M P,ABILD-PEDERSEN F,REMEDIAKIS I N,et al.Structure Sensitivity of the Methanation Reaction:H2-induced CO Dissociation on Nickel Surfaces[J].Journal of Catalysis,2008,255(1):6-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700