用户名: 密码: 验证码:
基于变步长局域电沉积法的纺锤形微铜柱制备
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spindle-shaped Copper Micropillar Preparation by Variable Step Local Electrochemistry Deposition
  • 作者:坎标 ; 徐盛松 ; 丁建宁 ; 顾迪 ; 韩建
  • 英文作者:KAN Biao;XU Shengsong;DING Jianning;GU Di;HAN Jian;School of Mechanical Engineering,Changzhou University;Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering;Changzhou High Technology Research Key Laboratory of Mould Advanced Manufacturing;Research Center for Micro/Nano Science and Technology,Jiangsu University;
  • 关键词:局域电沉积 ; 纺锤形微铜柱 ; 变步长
  • 英文关键词:local electrochemistry deposition;;spindle-shaped copper micropillar;;variable step
  • 中文刊名:DJGU
  • 英文刊名:Electromachining & Mould
  • 机构:常州大学机械工程学院;江苏省光伏科学与工程协同创新中心;常州市模具先进制造高技术研究重点实验室;江苏大学微纳米科学技术研究中心;
  • 出版日期:2019-06-20
  • 出版单位:电加工与模具
  • 年:2019
  • 期:No.347
  • 基金:国家自然科学基金资助项目(51105046,51335002);; 江苏省研究生科研创新计划项目(KYCX17_2087)
  • 语种:中文;
  • 页:DJGU201903013
  • 页数:5
  • CN:03
  • ISSN:32-1589/TH
  • 分类号:58-62
摘要
针对变截面微柱的局域电沉积制备开展了实验与仿真模拟,采用直径100μm的阳极针尖,通过改变连续提拉的步长制备了平均直径从92~293μm不等的自支撑微铜柱,探讨了提拉步长与铜柱直径的关系,进而提出了一种变步长局域电沉积方法,并成功制备了中部最大直径为164μm的变截面纺锤形微铜柱,同时利用COMSOL软件建立了数值仿真模型,分析了纺锤形铜柱形成的原因,可为基于局域电沉积法的复杂微结构制备提供参考。
        Aiming to fabricate micropillar with variable cross-section,experiment and simulation studies were conducted. Free-standing copper micropillars with diameters varying from 92 μm to 293μm were deposited under an anode needle with the diameter of 100 μm by varying the withdrawal step length of the needle,and the relation between withdrawal step length and pillar diameter was discussed.As a result,a variable step local electrochemistry deposition method was proposed,and a spindle-shaped copper micropillar with a maximum diameter of 164 μm in middle position was prepared. A numerical simulation model was established by adopting COMSOL software to analyze the reason for formation of spindle-shaped micropillar. The results in this paper may serve as a reference for the preparation of complex micro-structures by localized electrochemical deposition.
引文
[1] HUNTER I W,LAFONTAINE S R,MADDEN J D. Three dimensional microfabrication by localized electro deposition and etching:US5641391[P]. 1997-6-24.
    [2] MADDEN J D,HUNTER I W. Three-dimensional microfabrication by localized electrochemical deposition[J]. Journal of Microelectromechanical Systems,1996,5(1):24-32.
    [3] LIN Yenpo,ZHANG Yong,YU Minfeng. Parallel process3D metal microprinting[J]. ADVANCED Materials Technologies,2019,4(1):1800393.
    [4] CHEN Mojun,XU Zhaoyi,KIM J H,et al. Meniscus-ondemand parallel 3D nanoprinting[J]. ACS Nano,2018,12(5):4172-4177.
    [5] MOMOTENKO D,PAGE A,ADOBES-VIDAL M,et al.Write-read 3D patterning with a dual-channel nanopipette[J]. ACS Nano,2016,10(9):8871-8878.
    [6] LEI Yu,ZHANG Xianyun,XU Dingding,et al. Dynamic“Scanning-Mode” meniscus confined electrodepositing and micropatterning of individually addressable ultraconductive copper line arrays[J]. Journal of Physical Chemistry Letters,2018,9(9):2380-2387.
    [7] PELLICER E,PANE S,PANAGIOTOPOULOU V,et al.Localized electrochemical deposition of porous cu-ni microcolumns:insights into the growth Mechanisms and the mechanical performance[J]. International Journal of Electrochemical Science,2012,7(5):4014-4029.
    [8] LIN J C,CHANG T K,YANG J H,et al. Fabrication of a micrometer ni-cu alloy column coupled with a cu microcolumn for thermal measurement[J]. Journal of Micromechanics and Microengineering,2009,19(1):015030.
    [9] TSENG Y T,LIN J C,CIOU Y J,et al. Fabrication of a novel microsensor consisting of electrodeposited ZnO nanorod-coated crossed Cu micropillars and the effects of nanorod coating morphology on the gas sensing[J]. ACS Applied Materials and Interfaces,2014,6(14):11424-11438.
    [10] HABIB M A,RAHMAN M. Performance of electrodes fabricated by localized electrochemical deposition(LECD)in micro-EDM operation on different workpiece materials[J]. Journal of Manufacturing Processes,2016(24):78-89.
    [11] WANG Fuliang,XIAO Hongbin,HE Hu. Effects of applied potential and the initial gap between electrodes on localized electrochemical deposition of micrometer copper columns[J]. Scientific Reports,2016(6):26270.
    [12] LEE C Y,LIN C S,LIN B R. Localized electrochemical deposition process improvement by using different anodes and deposition directions[J]. Journal of Micromechanics and Microengineering,2008,18(10):105008.
    [13] SAID R A. Microfabrication by localized electrochemical deposition:experimental investigation and theoretical modelling[J]. Nanotechnology,2003,14(5):523-531.
    [14] WANG Fuliang,LI Yijie,HE Hu,et al. Effect of bis-(3-sulfopropyl)disulfide and chloride ions on the localized electrochemical deposition of copper microstructures[J].Journal of The Electrochemical Society,2017,164(7):D419-D424.
    [15]徐凌羿,张勇斌,陈金明,等.微细电沉积加工技术浅析及实验研究[J].电加工与模具,2016(S1):47-51.
    [16] WANG Fuliang,BIAN Hailiang,WANG Feng,et al.Fabrication of micro copper walls by localized electrochemical deposition through the layer by layer movement of a micro anode[J]. Journal of The Electrochemical Society,2017,164(12):D758-D763.
    [17] DARYADEL S,BEHROOZFAR A,MORSALI S R,et al.Localized pulsed electrodeposition process for threedimensional printing of nanotwinned metallic nanostructures[J]. Nano Letters,2018,18(1):208-214.
    [18] JE J H,KIM J M,JAWORSKI J. Progression in the fountain pen Aapproach:from 2D writing to 3D free-form micro/nanofabrication[J]. Small,2017,13(2):1600137.
    [19] SEOL S K,KIM D,LEE S,et al. Electrodeposition-based3D printing of metallic microarchitectures with controlled internal structures[J]. Small,2015,11(32):3896-3902.
    [20] CIOU Y J,HWANG Y R,LIN J C,et al. Comparison of simulation and experimental results for the deposition orientation in localized electrochemical deposition[J].Japanese Journal of Applied Physics,2018,57(11):117301.
    [21] BRANT A M,SUNDARAM M M,KAMARAJ A B. Finite element simulation of localized electrochemical deposition for maskless electrochemical additive manufacturing[J].Journal of Manufacturing Science and EngineeringTransactions of the ASME,2015,137(1):011018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700