用户名: 密码: 验证码:
地质封存条件下CO_2在模拟盐水层溶液中的溶解度研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the solubility of CO_2 in simulated saline solution under geological storage condition
  • 作者:金旸钧 ; 陈乃安 ; 盛溢 ; 徐艳梅 ; 王军良 ; 潘志彦
  • 英文作者:Jin Yangjun;Chen Nai'an;Sheng Yi;Xu Yanmei;Wang Junliang;Pan Zhiyan;School of Environment, Zhejiang University of Technology;
  • 关键词:CO_2 ; 溶解度 ; 拉曼光谱 ; 模拟深部盐水层 ; 石英毛细管
  • 英文关键词:CO_2;;solubility;;Raman spectroscopy;;simulated deep saline aquifer;;fused silica capillary
  • 中文刊名:KTDQ
  • 英文刊名:Reservoir Evaluation and Development
  • 机构:浙江工业大学环境学院;
  • 出版日期:2019-06-26
  • 出版单位:油气藏评价与开发
  • 年:2019
  • 期:v.9;No.50
  • 基金:浙江省自然科学基金“地质封存条件下CO2在模拟油体系中的溶解及机理研究”(Y17D030003)
  • 语种:中文;
  • 页:KTDQ201903017
  • 页数:6
  • CN:03
  • ISSN:32-1825/TE
  • 分类号:83-87+94
摘要
CO_2过度排放所引起的温室效应已经对人类的生活造成了诸多不利影响。CO_2地质封存技术作为一项有效的CO_2处置技术,已经受到了越来越广泛的关注。研究了CO_2在模拟深部盐水层溶液中的溶解度及溶解度随埋存深度(800~2 800 m)的变化规律。结果表明,在800~1 700 m埋深范围内,CO_2溶解度随着盐水埋深的增加而减少;当埋深大于1 700 m时,CO_2溶解度则随着盐水埋深的增加而增加。CO_2溶解度随埋存深度的变化用方程进行了拟合,以此为基础预估了一定区域封存场地的CO_2封存量。
        The greenhouse effect caused by excessive CO_2 emissions has led to many adverse effects on human life. As an effective CO_2 disposal technology, CO_2 geological storage technology has aroused more and more attention. The solubility of CO_2 in simulated deep saline solution and its variation with burial depth(800~2 800 m)were studied. The results showed that, when the buried depth was in the range of 800~1 700 m, the solubility of CO_2 decreased with the increase of buried depth. When the buried depth was greater than 1 700 m, the solubility of CO_2 increased with the increase of saline depth. In addition, the change of CO_2 solubility with burial depth could be fitted by the equation. And based on this equation, the storage capacity of CO_2 in a certain area of storage site could be calculated.
引文
[1]段海燕,王雷.我国石油工业二氧化碳地质封存研究[J].石油钻采工艺,2009,31(1):121-124.
    [2] Leung D Y C, Caramanna G, Maroto-Valer M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39:426-443.
    [3] Kovscek A R, Kakici M D. Geologic storage of carbon dioxide and enhanced oil recovery.Ⅱ. Cooptimization of storage and recovery[J]. Energy Conversion and Management, 2005, 46(11-12):1941-1956.
    [4]刘红霞,廖传华,朱跃钊.二氧化碳矿物封存的研究进展[J].中国陶瓷,2010,46(7):9-14.
    [5]王景云,郭茹,杨海真.碳捕捉与封存研究进展浅析[J].环境科学与技术,2012,35(12):156-160.
    [6]刘志坚,史建公,张毅.二氧化碳储存技术研究进展[J].中外能源,2017,22(3):1-9.
    [7]谷丽冰,李治平,侯秀林.二氧化碳地质埋存研究进展[J].地质科技情报,2008,27(4):80-84.
    [8]俞宏伟,李实,陈兴隆.盐水层二氧化碳封存主控因素数值模拟研究[J].科学技术与工程, 2012,12(28):7314-7317.
    [9]万玉玉.鄂尔多斯盆地石千峰组咸水层CO2地质储存中CO2的迁移转化特征[D].吉林:吉林大学,2012.
    [10] Prutton C F, Savage R L. The solubility of carbon dioxide in calcium chloride-water solutions at 75°, 100°, 120°and high pressures[J]. Journal of the American Chemical Society, 2002, 67(9):1550-1554.
    [11] Nighswander J A, Kalogerakis N, Mehrotra A K. Solubilities of carbon dioxide in water and 1 wt%sodium chloride solution at pressures up to 10 MPa and temperatures from 80 to 200℃[J]. Journal of Chemical&Engineering Data, 1989, 34(3):355-360.
    [12] Teng H, Yamasaki A. Solubility of liquid CO2in synthetic sea water at temperatures from 278 K to 293 K and pressures from6.44 MPa to 29.49 MPa, and densities of the corresponding aqueous solutions[J]. Journal of Chemical&Engineering Data,1998, 43(1):1301-1310.
    [13] Liu Y, Hou M, Yang G, et al. Solubility of CO2in aqueous solutions of NaCl, KCl, CaCl2and their mixed salts at different temperatures and pressures[J]. Journal of Supercritical Fluids,2011, 56(2):125-129.
    [14]胡丽莎,常春,于青春.鄂尔多斯盆地山西组地下咸水CO2溶解能力[J].地球科学,2012,37(2):301-306.
    [15]曾荣树,孙枢,陈代钊,等.减少二氧化碳向大气层的排放—二氧化碳地下储存研究[J].中国科学基金,2004,18(4):6-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700