用户名: 密码: 验证码:
Cu_2O@ZnO复合光催化剂对难生物降解有机物的光降解
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Photodegradation of refractory organic compounds by Cu_2O@ZnO composite photocatalyst
  • 作者:柴晴雯 ; 吕艳 ; 张周 ; 李炜 ; 刘芳 ; 王永强 ; 刘春爽
  • 英文作者:CHAI Qing-wen;Lü yan;ZHANG Zhou;LI Wei;LIU Fang;Wang Yong-qiang;LIU Chun-shuang;College of Chemical Engineering, China University of Petroleum (East China);State Key Laboratory of Petroleum Pollution Control and Treatment, China University of Petroleum (Beijing);
  • 关键词:Cu2O@ZnO ; 光催化 ; 异质结 ; 对硝基苯酚 ; 聚丙烯酰胺
  • 英文关键词:Cu2O@ZnO;;photocatalysis;;heterojunction;;p-nitrophenol;;polyacrylamide
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:中国石油大学(华东)化学工程学院;中国石油大学(北京)石油石化污染物控制与处理国家重点实验室;
  • 出版日期:2019-07-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:v.39
  • 基金:国家油气重大专项(2016ZX05040003-005-002)
  • 语种:中文;
  • 页:ZGHJ201907019
  • 页数:9
  • CN:07
  • ISSN:11-2201/X
  • 分类号:136-144
摘要
通过改进的浸渍-还原-空气氧化法成功制备了Cu_2O@ZnO复合光催化剂,考察Cu_2O@ZnO对对硝基苯酚(PNP)和聚丙烯酰胺(PAM)2种不同化学结构污染物的光催化效果,同时探究了催化剂的稳定性和降解机制.结果表明,在模拟太阳光照射下,当铜锌物质的量比为0.15时,Cu_2O@ZnO复合光催化剂具有最佳的光催化降解性能,其中对硝基苯酚的光催化降解率为98.2%,聚丙烯酰胺光催化降解率为99.7%.基于X射线衍射(XRD)、X射线光电子能谱(XPS)、光致发光(PL)光谱、紫外-可见(UV-Vis)吸收光谱等表征手段可以推断,Cu_2O和ZnO形成Ⅱ型异质结,有效地抑制光生电子空穴对的复合.自由基捕获实验指出超氧自由基和空穴为主要活性物种,经过4次循环使用后光催化剂仍具有很高的光催化性能.
        Cu_2O@ZnO composite photocatalyst was successfully prepared by improved impregnation-reduction-air oxidation method,and the photocatalytic activity and degradation mechanism of the Cu_2O@ZnO was investigated by the degradation of two different chemical pollutants(p-nitrophenol(PNP)and polyacrylamide(PAM)).Cu_2O@ZnO composite photocatalyst expressed the best photocatalytic degradation performance under the simulated sunlight when the molar ratio of copper to zinc was 0.15,the photocatalytic degradation rates of p-nitrophenol and polyacrylamide arrived at 98.2%and 99.7%,respectively.The results of X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),photoluminescence spectroscopy(PL),ultraviolet-visible(UV-Vis)absorption spectroscopy and so on showed that Cu_2O and ZnO formed type II heterojunction,then the recombination of photogenerated electron hole pairs was inhibited effectively.Superoxide radicals and holes were the main active species by free radical trapping experiments,and the photocatalyst still expressed high photocatalytic activity after four cycles of reaction.Key words:CuO@ZnO;photocatalysis;heterojunction;p-nitrophenol;polyacrylamide
引文
[1]Tang D,Zheng Z,Lin K,et al.Adsorption of p-nitrophenol from aqueous solutions onto activated carbon fiber[J].Journal of Hazardous Materials,2007,143(1):49-56.
    [2]王哲,徐毅,黄国和,等.对硝基苯酚和重金属在高炉水淬渣上的竞争吸附研究[J].中国环境科学,2016,36(12):3686-3695.Wang Z,Xu Y,Huang G H,et al.Competitive adsorption of p-nitrophenol and heavy metals on water-quenched blast furnace slag[J].China Environmental Science,2016,36(12):3686-3695.
    [3]王瑞莲.聚丙烯酰胺光降解与光催化降解研究[D].成都:西南石油大学,2007.Wang R L.Photodegradation and photocatalytic degradation of polyacrylamide[D].Chengdu:Southwest Petroleum University,2007.
    [4]Zhang G,Hu L,Zhao R,et al.Microwave-assisted synthesis of ZnNiAllayered double hydroxides with calcination treatment for enhanced PNPphoto-degradation under visible-light irradiation[J].Journal of Photochemistry&Photobiology A Chemistry,2018,356:633-641.
    [5]王盈霏,王枫亮,黎杰华,等.介孔氮化碳光催化降解诺氟沙星的动力学机制[J].中国环境科学,2018,38(4):1346-1355.Wang Y F,Wang F L,Li J H,et al.Kinetic mechanism of photocatalytic degradation of Norfloxacin by mesoporous carbon nitride[J].China Environmental Science,2018,38(4):1346-1355.
    [6]张凯龙,施妙艳,倪貌貌,等.优化内浸式Ce掺杂ZnO光催化降解罗丹明B[J].中国环境科学,2019,39(4):1447-1455.Zhang K L,Shi M Y,Ni M M,et al.Optimizing photocatalytic degradation of Rhodamine B by immersed Ce-doped ZnO[J].China Environmental Science,2019,39(4):1447-1455.
    [7]Vayssieres L.Growth of arrayed nanorods and nanowires of Zn O from aqueous solutions[J].Advanced Materials,2010,15(5):464-466.
    [8]Vayssieres L,Keis K,Lindquist S E,et al.Purpose-built anisotropic metal oxide material:3D highly oriented microrod array of ZnO[J].Journal of Physical Chemistry B,2001,105(17):3350-3352.
    [9]Wang C,Xu B Q,Wang X,et al.Preparation and photocatalytic activity of ZnO/TiO2/SnO2 mixture[J].Journal of Solid State Chemistry,2005,178(11):3500-3506.
    [10]刘双柳,施春红,牛红云,等.纳米铜复合材料催化还原染料废水的研究[J].中国环境科学,2015,35(3):764-769.Liu S L,Shi C H,Niu H Y,et al,Study on catalytic reduction of dye wastewater by copper nanocomposites[J].China Environmental Science,2015,35(3):764-769.
    [11]曾滔,林海燕,余岩,等.AgI/Ag3PO4异质结催化剂可见光催化还原CO2的研究[J].中国环境科学,2017,37(5):1751-1758.Zeng T,Lin H Y,Yu Y,et al.Study on visible-light photocatalytic reduction of CO2 over AgI/Ag3PO4 heterojunction catalyst[J].China Environmental Science,2017,37(5):1751-1758.
    [12]Xu C,Cao L X,Su G,et al.Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes[J].Journal of Hazardous Materials,2010,176(1):807-813.
    [13]Deo M,Shinde D,Yengantiwar A,et al.Cu2O/ZnO hetero-nanobrush:hierarchical assembly,field emission and photocatalytic properties[J].Journal of Materials Chemistry,2012,22(33):17055-17062.
    [14]Lv P,Lin L,Zheng W,et al.Photosensitivity of ZnO/Cu2O thin film heterojunction[J].Optik-International Journal for Light and Electron Optics,2013,124(17):2654-2657.
    [15]党蕊,董文钧.纳米氧化亚铜的制备方法:中国,CN201310116746.4[P].2013-06-26.Dang R,Dong W J.Preparation of nanometer cuprous oxide:China,CN201310116746.4[P].2013-06-26.
    [16]董琪.可见光响应的Cu2O/ZnO催化剂的制备及性能研究[D].长春:吉林大学,2016.Dong Q.Preparation and properties of Cu2O/ZnO catalysts with visible light response[D].Changchun:Jilin University,2016.
    [17]Zheng L,Zheng Y,Chen C,et al.Network structured SnO2/ZnOheterojunction nanocatalyst with high photocatalytic activity[J].Inorganic Chemistry,2009,48(5):1819-1825.
    [18]Azimi H,Kuhri S,Osvet A,et al.Effective ligand passivation of Cu?Onanoparticles through solid-state treatment with mercaptopropionic acid[J].Journal of the American Chemical Society,2014,136(20):7233-7236.
    [19]Huang L,Peng F,Yu H,et al.Preparation of cuprous oxides with different sizes and their behaviors of adsorption,visible-light driven photocatalysis and photocorrosion[J].Solid State Sciences,2009,11(1):129-138.
    [20]Shu J,Wang Z,Huang Y,et al.Adsorption removal of Congo red from aqueous solution by polyhedral Cu2O nanoparticles:Kinetics,isotherms,thermodynamics and mechanism analysis[J].Journal of Alloys and Compounds,2015,633:338-346.
    [21]Zheng Z,Huang B,Wang Z,et al.Crystal faces of Cu2O and their stabilities in photocatalytic reactions[J].Journal of Physical Chemistry C,2009,113(32):462-470.
    [22]Chen M,Wang X,Yu Y H,et al.X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films[J].Applied Surface Science,2000,158(1):134-140.
    [23]Teo J J,Chang Y,Hua C Z.Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals[J].Langmuir the Acs Journal of Surfaces&Colloids,2006,22(17):7369-7377.
    [24]李翠霞,金海泽,谭高伟,等.r GO/TiO2复合光催化剂的制备及光催化性能[J].中国环境科学,2017,37(2):570-576.Li C X,Jin H Z,Tan G W,et al.Preparation and photocatalytic properties of rGO/TiO2 dioxide composite photocatalyst[J].China Environmental Science,2017,37(2):570-576.
    [25]Yang J,Zheng J,Zhai H,et al.Oriented growth of ZnO nanostructures on different substrates via a hydrothermal method[J].Journal of Alloys&Compounds,2010,489(1):51-55.
    [26]Yun Y Z,Jin M.Controllable synthesis of flower-and rod-like ZnOnanostructures by simply tuning the ratio of sodium hydroxide to zinc acetate[J].Nanotechnology,2007,18:1-6.
    [27]杨佳,牛晓君,陈伟仡,等.BiOBr@Bi2MO6复合光催化剂制备及其对RhB和BPA降解[J].中国环境科学,2017,37(6):2130-2138.Yang J,Niu X J,Chen W D,et al.Preparation of BiOBr@Bi2MO6composite photocatalyst and its degradation of RhB and BPA[J].China Environmental Science,2017,37(6):2130-2138.
    [28]Ying L,Yanyan X,Qiong W,et al.Synthesis of Cu2O nanocrystals/TiO2 photonic crystal composite for efficient p-nitrophenol removal[J].Colloids and Surfaces A,2018,5(9):291-300.
    [29]Ahmad Esmaielzadeh K,Ylias Mohammad S,Periasamy S R,et al.Controlling Core/Shell Formation of Nanocubic p-Cu2O/n-ZnOToward Enhanced Photocatalytic Performance[J].Langmuir the Acs Journal of Surfaces&Colloids,2015,31(39):10922-10930.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700