用户名: 密码: 验证码:
Multiple active components synergistically driven heteroatom-doped porous carbon as high-performance counter electrode in dye-sensitized solar cells
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multiple active components synergistically driven heteroatom-doped porous carbon as high-performance counter electrode in dye-sensitized solar cells
  • 作者:Hongyu ; Jing ; Danyang ; Wu ; Suxia ; Liang ; Xuedan ; Song ; Yonglin ; An ; Ce ; Hao ; Yantao ; Shi
  • 英文作者:Hongyu Jing;Danyang Wu;Suxia Liang;Xuedan Song;Yonglin An;Ce Hao;Yantao Shi;State Key Laboratory of Fine Chemicals, Dalian University of Technology;
  • 英文关键词:Counter electrode;;Self-activation;;Biomass-derived carbon;;Electrocatalytic performance
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:State Key Laboratory of Fine Chemicals, Dalian University of Technology;
  • 出版日期:2019-04-04
  • 出版单位:Journal of Energy Chemistry
  • 年:2019
  • 期:v.31
  • 基金:financial assistance from the National Natural Science Foundation of China (Grant nos. 51402036 and 51773025);; the International Science & Technology Cooperation Program of China (Grant no. 2013DFA51000)
  • 语种:英文;
  • 页:TRQZ201904010
  • 页数:6
  • CN:04
  • ISSN:10-1287/O6
  • 分类号:97-102
摘要
A facile template-free in situ self-activation approach for the multiple active components synergistically driven porous carbon was presented via a feasible annealing process.The biomass-derived carbon without additional activation reagents was fabricated using K-rich pomelo peel(PP)as the carbon source,which possesses a high electric conductivity where abundant functional hetero-metal atoms are doped into the carbon framework that playing the role of catalytic graphitization.The K~+that exists within the biomass can induce self-activation during pyrolysis apart from the activating gases during the pyrolysis process.The resulting electrocatalyst of PP-850(PP was pyrolyzed at 850°C in an N_2atmosphere)with abundant heteroatoms possesses a higher power conversion efficiency(PCE)of 7.81%as the counter electrode(CE)of dye-sensitized solar cells(DSCs)compared with the CEs calcinated at other temperatures and a similar PCE with Pt counterpart(8.24%)based on the liquid I_3~-/I~-electrolyte.The better electrocatalytic performance is attributed to the synergistic effect between self-activation and the co-doping of nitrogen,sulfur and phosphorus all together in a carbon matrix.Due to the feasibility of large-scale production,rich heteroatom doping,the PP-derived carbon,which simplifies the procedure and decreases the cost,has a potential application for an alternative electrocatalyst for high-performance photovoltaic devices.
        A facile template-free in situ self-activation approach for the multiple active components synergistically driven porous carbon was presented via a feasible annealing process.The biomass-derived carbon without additional activation reagents was fabricated using K-rich pomelo peel(PP)as the carbon source,which possesses a high electric conductivity where abundant functional hetero-metal atoms are doped into the carbon framework that playing the role of catalytic graphitization.The K~+that exists within the biomass can induce self-activation during pyrolysis apart from the activating gases during the pyrolysis process.The resulting electrocatalyst of PP-850(PP was pyrolyzed at 850°C in an N_2atmosphere)with abundant heteroatoms possesses a higher power conversion efficiency(PCE)of 7.81%as the counter electrode(CE)of dye-sensitized solar cells(DSCs)compared with the CEs calcinated at other temperatures and a similar PCE with Pt counterpart(8.24%)based on the liquid I_3~-/I~-electrolyte.The better electrocatalytic performance is attributed to the synergistic effect between self-activation and the co-doping of nitrogen,sulfur and phosphorus all together in a carbon matrix.Due to the feasibility of large-scale production,rich heteroatom doping,the PP-derived carbon,which simplifies the procedure and decreases the cost,has a potential application for an alternative electrocatalyst for high-performance photovoltaic devices.
引文
[1] A. Fakharuddin, R. Jose, T.M. Brown, F.F. Santiago, J. Bisquert, Energy Environ.Sci. 7(2014)3952–3981.
    [2] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Y. Lin, Y. Xie, Y. Wei,Chem. Soc. Rev. 46(2017)5975–6023.
    [3] Z. Yang, J. Ren, Z. Zhang, X. Chen, G. Guan, L. Qiu, Y. Zhang, H. Peng, Chem.Rev. 115(2015)5159–5223.
    [4] B. Hu, K. Wang, L. Wu, S.H. Yu, M. Antonietti, M.M. Titirici, Adv. Mater. 22(2010)813–828.
    [5] J. Wang, P. Nie, B. Ding, S. Dong, X. Hao, H. Dou, X. Zhang, J. Mater. Chem. A 5(2017)2411–2428.
    [6] M. Hosseinnezhad, K. Gharanjig, S. Moradian, Energy 134(2017)864–870.
    [7] Y. Fang, H. Wang, H. Yu, F. Peng, Electrochim. Acta 213(2016)273–282.
    [8] F. Pan, Z. Cao, Q. Zhao, H. Liang, J. Zhang, J. Power Sources 272(2014)8–15.
    [9] X. Liu, Y. Zhou, W. Zhou, L. Li, S. Huang, S. Chen, Nanoscale 7(2015)6136–6142.
    [10] C. Peng, X.B. Yan, R.T. Wang, J.W. Lang, Y.J. Ou, Q.J. Xue, Electrochim. Acta 87(2013)401–408.
    [11] G. Xu, J. Han, B. Ding, P. Nie, J. Pan, H. Dou, H. Li, X. Zhang, Green Chem. 17(2015)1668–1674.
    [12] D. Gu, W. Schmidt, C.M. Pichler, H.J. Bongard, B. Spliethoff, S. Asahina, Z. Cao,O. Terasaki, F. Schgth, Angew. Chem. Int. Ed. 129(2017)11374–11377.
    [13] K. Na, M. Choi, R. Ryoo, Micropor. Mesopor. Mater. 166(2013)3–19.
    [14] L. Guo, X. Wang, Y. Wang, Chem. Eng. J. 313(2017)1295–1301.
    [15] H.W. Liang, X. Zhuang, S. Bruller, X. Feng, K. Mullen, Nat. Commun. 5(2014)4973.
    [16] D. Higgins, Z. Chen, D.U. Lee, Z. Chen, J. Mater. Chem. A 1(2013)2639–2645.
    [17] Q. Liang, L. Ye, Z.H. Huang, Q. Xu, Y. Bai, F. Kang, Q.H. Yang, Nanoscale 6(2014)13831–13837.
    [18] L. Zhou, P. Fu, D. Wen, Y. Yuan, S. Zhou, Appl. Catal. B:Environ. 181(2016)635–643.
    [19] H. Wang, F.X. Yin, B.H. Chen, X.B. He, P.L. Lv, C.Y. Ye, D.J. Liu, Appl. Catal. B:Environ. 205(2017)55–67.
    [20] Q. Liang, L. Ye, Z.H. Huang, Q. Xu, Y. Bai, F. Kang, Q.H. Yang, Nanoscale 6(2014)13831–13837.
    [21] J. Zhang, J. Xiang, Z. Dong, Y. Liu, Y. Wu, C. Xu, G. Du, Electrochim. Acta 116(2014)146–151.
    [22] K.L. Hong, L. Qie, R. Zeng, Z.Q. Yi, W. Zhang, D. Wang, W. Yin, C. Wu, Q.J. Fan,W.X. Zhang, Y.H. Huang, J. Mater. Chem. A 2(2014)12733–12738.
    [23] J. Wang, P. Nie, B. Ding, S. Dong, X. Hao, H. Dou, X. Zhang, J. Mater. Chem. A 5(2017)2411–2428.
    [24] M. Biswal, A. Banerjee, M. Deo, S. Ogale, Energy Environ. Sci. 6(2013)1249–1259.
    [25] E. Raymundo-Pinero, M. Cadek, F. Beguin, Adv. Funct. Mater. 19(2009)1032–1039.
    [26] J. Yan, Q. Wang, T. Wei, Z. Fan, Adv. Energy Mater. 4(2014)1300816.
    [27] J. Wang, S. Kaskel, J. Mater. Chem. 22(2012)23710–23725.
    [28] A. Jnes, H. Kurig, E. Lust, Carbon 45(2007)1226–1233.
    [29] Q. Liang, L. Ye, Z.-H. Huang, Q. Xu, Y. Bai, F. Kang, Q.-H. Yang, Nanoscale 6(2014)13831–13837.
    [30] R. Wang, P. Wang, X. Yan, J. Lang, C. Peng, Q. Xue, ACS Appl. Mater. Interfaces4(2012)5800–5806.
    [31] L. Qie, W.M. Chen, H.H. Xu, X.Q. Xiong, Y. Jiang, F. Zou, X.L. Hu, Y. Xin,Z.L. Zhang, Y.H. Huang, Energy Environ. Sci. 6(2013)2497.
    [32] W. Xu, N. Mao, J. Zhang, Small 9(2013)1206–1224.
    [33] J. Fang, I. Levchenko, S. Kumar, D. Seo, K.K. Ostrikov, Sci. Technol. Adv. Mater.15(2014)055009.
    [34] S. Gao, K. Geng, H. Liu, X. Wei, M. Zhang, P. Wang, J. Wang, Energy Environ.Sci. 8(2015)221–229.
    [35] P.K. Chu, L. Li, Mater. Chem. Phys. 96(2006)253–277.
    [36] H. Tan, W. Liu, B. Gong, W. Zhang, H. Li, D. Yu, H. Wang, G. Li, L.A. Lucia, Langmuir 31(2015)9537–9545.
    [37] G.P. Hao, W.C. Li, D. Qian, A.H. Lu, Adv. Mater. 22(2010)853–857.
    [38] M.S. Akhter, J.R. Keifer, A.R. Chughtai, D.M. Smith, Carbon 23(1985)589–591.
    [39] R. Rana, R. Langenfeld-Heyser, R. Finkeldey, A. Polle, Wood Sci. Technol. 44(2010)225–242.
    [40] M.S. Akhter, J.R. Keifer, A.R. Chughtai, D.M. Smith, Carbon 23(1985)589–591.
    [41] J. Song, G.R. Li, C.Y. Wu, X.P. Gao, J. Power Sources 266(2014)464–470.
    [42] G.R. Li, F. Wang, Q.W. Jiang, X.P. Gao, P.W. Shen, Angew. Chem. Int. Ed. 49(2010)3653–3656.
    [43] P. Li, J. Wu, J. Lin, M. Huang, Y. Huang, Q. Li, Sol. Energy 83(2009)845–849.
    [44] M. Wu, X. Lin, T. Wang, J. Qiu, T. Ma, Energy Environ. Sci. 4(2011)2308–2315.
    [45] S. Yun, H. Zhang, H. Pu, J. Chen, A. Hagfeldt, T. Ma, Adv. Energy Mater. 3(2013)1407–1412.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700