用户名: 密码: 验证码:
累积挤压工艺制备纯铝的晶粒细化及力学性能(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Grain refinement and mechanical properties of pure aluminum processed by accumulative extrusion bonding
  • 作者:陈祥 ; 黄光胜 ; 刘帅帅 ; 韩廷状 ; 蒋斌 ; 汤爱涛 ; 朱运田 ; 潘复生
  • 英文作者:Xiang CHEN;Guang-sheng HUANG;Shuai-shuai LIU;Ting-zhuang HAN;Bin JIANG;Ai-tao TANG;Yun-tian ZHU;Fu-sheng PAN;State Key Laboratory of Mechanical Transmission,College of Materials Science and Engineering, Chongqing University;National Engineering Research Center for Magnesium Alloys, Chongqing University;Department of Materials Science and Engineering, North Carolina State University;
  • 关键词: ; 累积挤压结合 ; 显微组织 ; 力学性能 ; 应变硬化率
  • 英文关键词:aluminum;;accumulative extrusion bonding;;microstructure;;mechanical properties;;strain hardening rate
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:重庆大学材料科学与工程学院机械传动国家重点实验室;重庆大学国家镁合金材料工程技术研究中心;Department of Materials Science and Engineering,North Carolina State University;
  • 出版日期:2019-03-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:Project(2016YFB0301104) supported by the National Key Research and Development Program of China;; Projects(51671041,51531002) supported by the National Natural Science Foundation of China;; Project(cstc2017jcyjBX0040) supported by the Natural Science Foundation of Chongqing City,China
  • 语种:英文;
  • 页:ZYSY201903001
  • 页数:11
  • CN:03
  • ISSN:43-1239/TG
  • 分类号:4-14
摘要
研究一种新的剧烈塑性变形技术,即累积挤压结合(AEB)加工超细晶粒铝。显微组织表征结果表明,界面结合良好,6道次后样品的平均晶粒尺寸约为440 nm。拉伸试验结果表明,5道次后样品的抗拉强度达到最大值195 MPa,总伸长率超过16%;样品的硬度也显著提高,且在第1道次后几乎达到饱和。累积挤压加工的样品经拉伸试验后的扫描电镜断口形貌表明,断裂模式为剪切韧性断裂,同时出现细长浅韧窝。与传统累积叠轧工艺相比,此新型累积挤压技术在细化晶粒和改善力学性能方面更有效。
        Ultrafine-grained aluminum processed by a new severe plastic deformation technique, accumulative extrusion bonding(AEB), was investigated. Microstructural characterization indicated good interfacial bonding and an average grain size of ~440 nm was obtained after six passes. Tensile testing revealed that the strength reached the maximum value of 195 MPa and the total elongation exceeded 16% after five passes. The hardness was also significantly improved and almost reached saturation after the first pass. SEM fractography of AEB-processed specimens after tensile test showed that failure mode was shear ductile fracture with elongated shallow dimples. Comparison with conventional accumulative roll bonding indicates that this new AEB technique is more effective in refining grain and improving mechanical properties of the specimens.
引文
[1]WILLIAMS J C,STARKE E A.Progress in structural materials for aerospace systems[J].Acta Materialia,2003,51(19):5775-5799.
    [2]ZHILYAEV A P,LANGDON T G.Using high-pressure torsion for metal processing:Fundamentals and applications[J].Progress in Materials Science,2008,53(6):893-979.
    [3]POURALIAKBAR H,JANDAGHI M R,KHALAJ G.Constrained groove pressing and subsequent annealing of Al-Mn-Si alloy:Microstructure evolutions,crystallographic transformations,mechanical properties,electrical conductivity and corrosion resistance[J].Materials&Design,2017,124:34-46.
    [4]JIANG M G,YAN H,GAO L,CHEN R S.Microstructural evolution of Mg-7Al-2Sn Mg alloy during multi-directional impact forging[J].Journal of Magnesium&Alloys,2015,3(3):180-187.
    [5]NASERI R,KADKHODAYAN M,SHARIATI M.Static mechanical properties and ductility of biomedical ultrafine-grained commercially pure titanium produced by ECAP process[J].Transactions of Nonferrous Metals Society of China,2017,27(9):1964-1975.
    [6]SHATERANI P,ZAREI-HANZAKI A,FATEMI-VARZANEH S M,HASSAS-IRANI S B.The second phase particles and mechanical properties of 2124 aluminum alloy processed by accumulative back extrusion[J].Materials&Design,2014,58(6):535-542.
    [7]SAITO Y,TSUJI N,UTSUNOMIYA H,SAKAI T,HONG R G.Ultra-fine grained bulk aluminum produced by accumulative roll-bonding(ARB)process[J].Scripta Materialia,1998,39(9):1221-1227.
    [8]TSUJI N,SAITO Y,LEE S H,MINAMINO Y.ARB(accumulative roll-bonding)and other new techniques to produce bulk ultrafine grained materials[J].Advanced Engineering Materials,2003,5(5):338-344.
    [9]LI L,NAGAI K,YIN F X.Progress in cold roll bonding of metals[J].Science and Technology of Advanced Materials,2008,9(2):023001.
    [10]HAN T Z,HUANG G S,DENG Q Y,WANG G G,JIANG B,TANGA T,ZHU Y T,PAN F S.Grain refining and mechanical properties of AZ31 alloy processed by accumulated extrusion bonding[J].Journal of Alloys and Compounds,2018,745:599-608.
    [11]EIZADJOU M,MANESH H D,JANGHORBAN K.Microstructure and mechanical properties of ultra-fine grains(UFGs)aluminum strips produced by ARB process[J].Journal of Alloys and Compounds,2009,474(1-2):406-415.
    [12]YU C Y,KAO P W,CHANG C P.Transition of tensile deformation behaviors in ultrafine-grained aluminum[J].Acta Materialia,2005,53(15):4019-4028.
    [13]HUANG X,HANSEN N,TSUJI N.Hardening by annealing and softening by deformation in nanostructured metals[J].Science,2006,312:249-251.
    [14]HUANG J Y,ZHU Y T,JIANG H,LOWE T C.Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening[J].Acta Materialia,2001,49(9):1497-1505.
    [15]SU L,LU C,LI H,DENG G,TIEU K.Investigation of ultrafine grained AA1050 fabricated by accumulative roll bonding[J].Materials Science and Engineering A,2014,614:148-155.
    [16]HUGHES D A,HANSEN N,BAMMANN D J.Geometrically necessary boundaries,incidental dislocation boundaries and geometrically necessary dislocations[J].Scripta Materialia,2003,48(2):147-153.
    [17]LIU Q,HUANG X,LLOYD D J,HANSEN N.Microstructure and strength of commercial purity aluminium(AA1200)cold-rolled to large strains[J].Acta Materialia,2002,50(15):3789-3802.
    [18]HUMPHREYS F J,PRANGNELL P B,PRIESTNER R.Fine-grained alloys by thermomechanical processing[J].Current Opinion in Solid State&Materials Science,2001,5(1):15-21.
    [19]WU Xiao-lei,YANG Mu-xin,YUAN Fu-ping,WU Gui-lin,WEIYu-jie,HUANG Xiao-xu,ZHU Yun-tian.Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(47):14501-14505.
    [20]WU Xiao-lei,JIANG Ping,CHEN Liu,YUAN Fu-ping,ZHUYun-tian.Extraordinary strain hardening by gradient structure[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(20):7197-7201.
    [21]ZHU Y T,LIAO X.Nanostructured metals:Retaining ductility[J].Nature Materials,2004,3(6):351-352.
    [22]HUANG X,KAMIKAWA N,HANSEN N.Strengthening mechanisms in nanostructured aluminum[J].Materials Science and Engineering A,2008,483(1):102-104.
    [23]REIHANIAN M,EBRAHIMI R,TSUJI N,MOSHKSAR M M.Analysis of the mechanical properties and deformation behavior of nanostructured commercially pure Al processed by equal channel angular pressing(ECAP).Materials Science and Engineering A,2008,473(1):189-194.
    [24]WU Xiao-lei,ZHU Yun-tian.Heterogeneous materials:A new class of materials with unprecedented mechanical properties[J].Materials Research Letters,2017,5:527-532.
    [25]YANG Mu-xin,PAN Yue,YUAN Fu-ping,ZHU Yun-tian,WUXiao-lei.Back stress strengthening and strain hardening in gradient structure[J].Materials Research Letters,2016,4(3):1-7.
    [26]TSUJI N,ITO Y,SAITO Y,MINAMINO Y.Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing[J].Scripta Materialia,2002,47(12):893-899.
    [27]VALIEV R Z,ESTRIN Y,HORITA Z,LANGDON T G,ZEHETBAUER M J,ZHU Y T.Fundamentals of superior properties in bulk NanoSPD materials[J].Materials Research Letters,2016,4(1):1-21.
    [28]ZHAO Y H,GUO Y Z,WEI Q,DANGELEWICZ A M,XU C,ZHUY T.Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu[J].Scripta Materialia,2008,59(6):627-630.
    [29]JIAN W W,CHENG G M,XU W Z,YUAN H,TSAI M H,WANGQ D,KOCH C C,ZHU Y T,MATHAUDHU S N.Ultrastrong Mg alloy via nano-spaced stacking faults[J].Materials Research Letters,2013,1(2):61-66.
    [30]GASHTI S O,FATTAH-ALHOSSEINI A,MAZAHERI Y,KESHAVARZ M K.Effects of grain size and dislocation density on strain hardening behavior of ultrafine grained AA1050 processed by accumulative roll bonding[J].Journal of Alloys and Compounds,2016,658:854-861.
    [31]FATTAH-ALHOSSEINI A,IMANTALAB O,MAZAHERI Y,KESHAVARZ M K.Microstructural evolution,mechanical properties,and strain hardening behavior of ultrafine grained commercial pure copper during the accumulative roll bonding process[J].Materials Science and Engineering A,2016,650:8-14.
    [32]KWAN C,WANG Z,KANG S B.Mechanical behavior and microstructural evolution upon annealing of the accumulative roll-bonding(ARB)processed Al alloy 1100[J].Materials Science and Engineering A,2008,480:148-159.
    [33]NASERI M,REIHANIAN M,BORHANI E.A new strategy to simultaneous increase in the strength and ductility of AA2024 alloy via accumulative roll bonding(ARB)[J].Materials Science and Engineering A,2016,656:12-20.
    [34]REZA TOROGHINEJAD M,ASHRAFIZADEH F,JAMAATI R.On the use of accumulative roll bonding process to develop nanostructured aluminum alloy 5083[J].Materials Science and Engineering A,2013,561(3):145-151.
    [35]HERAKOVICH C T.Influence of layer thickness on the strength of angle-ply laminates[J].Journal of Composite Materials,1982,16(3):216-227.
    [36]TEKYEH-MAROUF B,BAGHERI R,MAHMUDI R.Effects of number of layers and adhesive ductility on impact behavior of laminates[J].Materials Letters,2004,58(22):2721-2724.
    [37]YAN H,LENARD J G.A study of warm and cold roll-bonding of an aluminium alloy[J].Materials Science and Engineering A,2004,385:419-428.
    [38]YU H L,LU C,TIEU AK,KONG C.Fabrication of nanostructured aluminum sheets using four-layer accumulative roll bonding[J].Materials and Manufacturing Processes,2014,29:448-453.
    [39]LIU C Y,ZHANG B,YU P F,JING R,MA M Z,LIU R P.Microstructures and mechanical properties of Al/Zn composites prepared by accumulative roll bonding and heat treatment[J].Materials Science and Engineering A,2013,580:36-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700