用户名: 密码: 验证码:
用于生物医学的新型多孔Ti6Al4V植入物的仿生设计和3D打印(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications
  • 作者:Wen-ming ; PENG ; Yun-feng ; LIU ; Xian-feng ; JIANG ; Xing-tao ; DONG ; Janice ; JUN ; Dale ; A.BAUR ; Jia-jie ; XU ; Hui ; PAN ; Xu ; XU
  • 英文作者:Wen-ming PENG;Yun-feng LIU;Xian-feng JIANG;Xing-tao DONG;Janice JUN;Dale A.BAUR;Jia-jie XU;Hui PAN;Xu XU;Key Laboratory of E&M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province;Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Case Western Reserve University;Head and Neck Surgery, Zhejiang Cancer Hospital;Oral and Maxillofacial Surgery, Stomatology Hospital Affiliated to Zhejiang University School of Medicine;Department of Stomatology, People's Hospital of Quzhou;
  • 关键词:分层片状杆连接多孔结构(LSRCMS) ; 多孔Ti6Al4V植入体 ; 骨缺损修复 ; 选择性激光熔融(SLM) ; 机械性能 ; 有限元分析
  • 英文关键词:Layered slice and rod-connected mesh structure(LSRCMS);;Porous Ti6Al4V implant;;Bone defect repair;;Selective laser melting(SLM);;Mechanical properties;;Finite element analysis
  • 中文刊名:ZDYW
  • 英文刊名:浙江大学学报B辑(生物医学与生物技术)(英文版)
  • 机构:Key Laboratory of E&M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province;Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Case Western Reserve University;Head and Neck Surgery, Zhejiang Cancer Hospital;Oral and Maxillofacial Surgery, Stomatology Hospital Affiliated to Zhejiang University School of Medicine;Department of Stomatology, People's Hospital of Quzhou;
  • 出版日期:2019-07-12
  • 出版单位:Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)
  • 年:2019
  • 期:v.20
  • 基金:Project supported by the National Natural Science Foundation of China(No.51775506);; the Zhejiang Provincial Natural Science Foundation of China(No.LY18E050022);; the Public Welfare Technology Application Research Project of Zhejiang Province(Nos.LGG19E050022 and 2017C33115);; the Zhejiang Provincial Science&Technology Project for Medicine&Health(No.2018KY878);; the Open Foundation of Zhejiang Provincial Top Key Discipline of Mechanical Engineering of Hangzhou Dianzi University,China
  • 语种:英文;
  • 页:ZDYW201908005
  • 页数:13
  • CN:08
  • ISSN:33-1356/Q
  • 分类号:39-51
摘要
目的:多孔结构植入体在骨科修复领域具有极大的应用前景。本研究提出了一种在结构与力学性能方面更贴近人体骨组织的多孔Ti6Al4V植入体。创新点:针对骨组织的结构特点,提出了"分层设计"理念,以期更好地模拟皮质骨和松质骨的结构。除了结构相似以外,这种植入体在力学性能和结构稳定性方面同样具有优势。方法:将传统多孔植入体三维晶胞设计方法转化为二维设计理念,设计出一种分层杆连接多孔结构,并利用选择性激光熔融(SLM)技术打印出样品;然后通过光学显微镜评测打印效果,利用单轴压缩试验研究分析样品的力学性能;最后利用有限元方法分析多孔结构的结构稳定性。结论:本研究所设计的新型分层杆连接结构可以通过SLM实现高质量的打印,且尺寸合理,力学性能与骨组织相接近,结构稳定性优于传统多孔结构。这种新型多孔结构植入体在骨缺损修复领域具有较好的潜在应用前景。
        In maxillofacial surgery, there is a significant need for the design and fabrication of porous scaffolds with customizable bionic structures and mechanical properties suitable for bone tissue engineering. In this paper, we characterize the porous Ti6 Al4 V implant, which is one of the most promising and attractive biomedical applications due to the similarity of its modulus to human bones. We describe the mechanical properties of this implant, which we suggest is capable of providing important biological functions for bone tissue regeneration. We characterize a novel bionic design and fabrication process for porous implants. A design concept of "reducing dimensions and designing layer by layer" was used to construct layered slice and rod-connected mesh structure(LSRCMS) implants. Porous LSRCMS implants with different parameters and porosities were fabricated by selective laser melting(SLM). Printed samples were evaluated by microstructure characterization, specific mechanical properties were analyzed by mechanical tests, and finite element analysis was used to digitally calculate the stress characteristics of the LSRCMS under loading forces. Our results show that the samples fabricated by SLM had good structure printing quality with reasonable pore sizes. The porosity, pore size, and strut thickness of manufactured samples ranged from(60.95± 0.27)% to(81.23±0.32)%,(480±28) to(685±31) μm, and(263±28) to(265±28) μm, respectively. The compression results show that the Young's modulus and the yield strength ranged from(2.23±0.03) to(6.36±0.06) GPa and(21.36±0.42) to(122.85±3.85) MPa, respectively. We also show that the Young's modulus and yield strength of the LSRCMS samples can be predicted by the Gibson-Ashby model. Further, we prove the structural stability of our novel design by finite element analysis. Our results illustrate that our novel SLM-fabricated porous Ti6 Al4 V scaffolds based on an LSRCMS are a promising material for bone implants, and are potentially applicable to the field of bone defect repair.
引文
Ahmadi SM,Campoli G,Yavari SA,et al.,2014.Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells.J Mech Behav Biomed Mater,34:106-115.https://doi.org/10.1016/j.jmbbm.2014.02.003
    Ajdari A,Jahromi BH,Papadopoulos J,et al.,2012.Hierarchical honeycombs with tailorable properties.Int J Solids Struct,49(11-12):1413-1419.https://doi.org/10.1016/j.ijsolstr.2012.02.029
    Arabnejad S,Johnston RB,Pura JA,et al.,2016.High-strength porous biomaterials for bone replacement:a strategy to assess the interplay between cell morphology,mechanical properties,bone ingrowth and manufacturing constraints.Acta Biomater,30:345-356.https://doi.org/10.1016/j.actbio.2015.10.048
    Arabnejad S,Johnston B,Tanzer M,et al.,2017.Fully porous3D printed titanium femoral stem to reduce stressshielding following total hip arthroplasty.J Orthop Res,35(8):1774-1783.https://doi.org/10.1002/jor.23445
    Ataee A,Li YC,Fraser D,et al.,2018.Anisotropic Ti-6Al-4Vgyroid scaffolds manufactured by electron beam melting(EBM)for bone implant applications.Mater Design,137:345-354.https://doi.org/10.1016/j.matdes.2017.10.040
    Attar H,L?ber L,Funk A,et al.,2015.Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting.Mater Sci Eng A,625:350-356.https://doi.org/10.1016/j.msea.2014.12.036
    Banse X,Devogelaer JP,Munting E,et al.,2001.Inhomogeneity of human vertebral cancellous bone:systematic density and structure patterns inside the vertebral body.Bone,28(5):563-571.https://doi.org/10.1016/S8756-3282(01)00425-2
    Bernard S,Grimal Q,Laugier P,2013.Accurate measurement of cortical bone elasticity tensor with resonant ultrasound spectroscopy.J Mech Behav Biomed Mater,18:12-19.https://doi.org/10.1016/j.jmbbm.2012.09.017
    Bobbert FSL,Lietaert K,Eftekhari AA,et al.,2017.Additively manufactured metallic porous biomaterials based on minimal surfaces:a unique combination of topological,mechanical,and mass transport properties.Acta Biomater,53:572-584.https://doi.org/10.1016/j.actbio.2017.02.024
    Bose S,Vahabzadeh S,Bandyopadhyay A,2013.Bone tissue engineering using 3D printing.Mater Today,16(12):496-504.https://doi.org/10.1016/j.mattod.2013.11.017
    Chen SY,Huang JC,Pan CT,et al.,2017.Microstructure and mechanical properties of open-cell porous Ti-6Al-4Vfabricated by selective laser melting.J Alloys Compd,713:248-254.https://doi.org/10.1016/j.jallcom.2017.04.190
    Choy SY,Sun CN,Leong KF,et al.,2017.Compressive properties of functionally graded lattice structures manufactured by selective laser melting.Mater Design,131:112-120.https://doi.org/10.1016/j.matdes.2017.06.006
    Gepreel MAH,Niinomi M,2013.Biocompatibility of Tialloys for long-term implantation.J Mech Behav Biomed Mater,20:407-415.https://doi.org/10.1016/j.jmbbm.2012.11.014
    Giannitelli SM,Accoto D,Trombetta M,et al.,2014.Current trends in the design of scaffolds for computer-aided tissue engineering.Acta Biomater,10(2):580-594.https://doi.org/10.1016/j.actbio.2013.10.024
    Gibson LJ,Ashby MF,1997.Cellular Solids:Structure and Properties,2nd Ed.Cambridge University Press,Cambridge,UK,p.510.
    Gorny B,Niendorf T,Lackmann J,et al.,2011.In situ characterization of the deformation and failure behavior of non-stochastic porous structures processed by selective laser melting.Mater Sci Eng A,528(27):7962-7967.https://doi.org/10.1016/j.msea.2011.07.026
    Gümrük R,Mines RAW,Karadeniz S,2013.Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions.Mater Sci Eng A,586:392-406.https://doi.org/10.1016/j.msea.2013.07.070
    Han CJ,Yan CZ,Wen SF,et al.,2017.Effects of the unit cell topology on the compression properties of porous Co-Cr scaffolds fabricated via selective laser melting.Rapid Prototyp J,23(1):16-27.https://doi.org/10.1108/RPJ-08-2015-0114
    Han CJ,Li Y,Wang Q,et al.,2018.Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants.J Mech Behav Biomed Mater,80:119-127.https://doi.org/10.1016/j.jmbbm.2018.01.013
    Harrysson OLA,Cansizoglu O,Marcellin-Little DJ,et al.,2008.Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology.Mater Sci Eng C Mater Biol Appl,28(3):366-373.https://doi.org/10.1016/j.msec.2007.04.022
    Hazlehurst KB,Wang CJ,Stanford M,2014.An investigation into the flexural characteristics of functionally graded cobalt chrome femoral stems manufactured using selective laser melting.Mater Design,60:177-183.https://doi.org/10.1016/j.matdes.2014.03.068
    Hedayati R,Hosseini-Toudeshky H,Sadighi M,et al.,2016.Computational prediction of the fatigue behavior of additively manufactured porous metallic biomaterials.Int JFatigue,84:67-79.https://doi.org/10.1016/j.ijfatigue.2015.11.017
    Henriksson I,Gatenholm P,H?gg DA,2017.Increased lipid accumulation and adipogenic gene expression of adipocytes in 3D bioprinted nanocellulose scaffolds.Biofabrication,9(1):015022.https://doi.org/10.1088/1758-5090/aa5c1c
    Horn TJ,Harrysson OLA,Marcellin-Little DJ,et al.,2014.Flexural properties of Ti6Al4V rhombic dodecahedron open cellular structures fabricated with electron beam melting.Addit Manuf,1-4:2-11.https://doi.org/10.1016/j.addma.2014.05.001
    International Organization for Standardization,2011.Mechanical Testing of Metals-Ductility Testing-Compression Test for Porous and Cellular Metals,ISO 13314:2011.International Organization for Standardization,Switzerland.
    Jiang GF,He G,2014.Enhancement of the porous titanium with entangled wire structure for load-bearing biomedical applications.Mater Design,56:241-244.https://doi.org/10.1016/j.matdes.2013.11.019
    Jung HD,Yook SW,Jang TS,et al.,2013.Dynamic freeze casting for the production of porous titanium(Ti)scaffolds.Mater Sci Eng C Mater Biol Appl,33(1):59-63.https://doi.org/10.1016/j.msec.2012.08.004
    Kadkhodapour J,Montazerian H,Raeisi S,2014.Investigating internal architecture effect in plastic deformation and failure for TPMS-based scaffolds using simulation methods and experimental procedure.Mater Sci Eng CMater Biol Appl,43:587-597.https://doi.org/10.1016/j.msec.2014.07.047
    Kadkhodapour J,Montazerian H,Darabi AC,et al.,2015.Failure mechanisms of additively manufactured porous biomaterials:effects of porosity and type of unit cell.JMech Behav Biomed Mater,50:180-191.https://doi.org/10.1016/j.jmbbm.2015.06.012
    Kadkhodapour J,Montazerian H,Darabi AC,et al.,2017.The relationships between deformation mechanisms and mechanical properties of additively manufactured porous biomaterials.J Mech Behav Biomed Mater,70:28-42.https://doi.org/10.1016/j.jmbbm.2016.09.018
    Levine BR,Sporer S,Poggie RA,et al.,2006.Experimental and clinical performance of porous tantalum in orthopedic surgery.Biomaterials,27(27):4671-4681.https://doi.org/10.1016/j.biomaterials.2006.04.041
    Li PF,2015.Constitutive and failure behaviour in selective laser melted stainless steel for microlattice structures.Mater Sci Eng A,622:114-120.https://doi.org/10.1016/j.msea.2014.11.028
    Melancon D,Bagheri ZS,Johnston RB,et al.,2017.Mechanical characterization of structurally porous biomaterials built via additive manufacturing:experiments,predictive models,and design maps for load-bearing bone replacement implants.Acta Biomater,63:350-368.https://doi.org/10.1016/j.actbio.2017.09.013
    Qin M,Liu YX,Wang L,et al.,2015.Design and optimization of the fixing plate for customized mandible implants.JCraniomaxillofac Surg,43(7):1296-1302.https://doi.org/10.1016/j.jcms.2015.06.003
    Ravari MRK,Kadkhodaei M,Badrossamay M,et al.,2014.Numerical investigation on mechanical properties of cellular lattice structures fabricated by fused deposition modeling.Int J Mech Sci,88:154-161.https://doi.org/10.1016/j.ijmecsci.2014.08.009
    Smith M,Guan Z,Cantwell WJ,2013.Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique.Int J Mech Sci,67:28-41.https://doi.org/10.1016/j.ijmecsci.2012.12.004
    Sun JF,Yang YQ,Wang D,2013.Mechanical properties of a Ti6Al4V porous structure produced by selective laser melting.Mater Design,49:545-552.https://doi.org/10.1016/j.matdes.2013.01.038
    Surmeneva MA,Surmenev RA,Chudinova EA,et al.,2017.Fabrication of multiple-layered gradient cellular metal scaffold via electron beam melting for segmental bone reconstruction.Mater Design,133:195-204.https://doi.org/10.1016/j.matdes.2017.07.059
    van Bael S,Chai YC,Truscello S,et al.,2012.The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective lasermelted Ti6Al4V bone scaffolds.Acta Biomater,8(7):2824-2834.https://doi.org/10.1016/j.actbio.2012.04.001
    Wang XJ,Xu SQ,Zhou SW,et al.,2016.Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants:a review.Biomaterials,83:127-141.https://doi.org/10.1016/j.biomaterials.2016.01.012
    Yan CZ,Hao L,Hussein A,et al.,2015.Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting.J Mech Behav Biomed Mater,51:61-73.https://doi.org/10.1016/j.jmbbm.2015.06.024
    Yánez A,Cuadrado A,Martel O,et al.,2018.Gyroid porous titanium structures:a versatile solution to be used as scaffolds in bone defect reconstruction.Mater Design,140:21-29.https://doi.org/10.1016/j.matdes.2017.11.050
    Yavari SA,Ahmadi SM,Wauthle R,et al.,2015.Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials.JMech Behav Biomed Mater,43:91-100.https://doi.org/10.1016/j.jmbbm.2014.12.015
    Zargarian A,Esfahanian M,Kadkhodapour J,et al.,2014.Effect of solid distribution on elastic properties of opencell cellular solids using numerical and experimental methods.J Mech Behav Biomed Mater,37:264-273.https://doi.org/10.1016/j.jmbbm.2014.05.018
    Zargarian A,Esfahanian M,Kadkhodapour J,et al.,2016.Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures.Mater Sci Eng C Mater Biol Appl,60:339-347.https://doi.org/10.1016/j.msec.2015.11.054
    Zhang BQ,Pe X,Zhou CC,et al.,2018.The biomimetic design and 3D printing of customized mechanical properties porous Ti6Al4V scaffold for load-bearing bone reconstruction.Mater Design,152:30-39.https://doi.org/10.1016/j.matdes.2018.04.065

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700