用户名: 密码: 验证码:
TC4-DT钛合金材料动态力学性能及其本构模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic Mechanics Behavior and Constitutive Model of TC4-DT Titanium Alloy Materials
  • 作者:艾建光 ; 姜峰 ; 言兰
  • 英文作者:AI Jianguang;JIANG Feng;YAN Lan;Institute of Manufacturing Engineering,Huaqiao University;College of Mechanical Engineering and Automation,Huaqiao University;
  • 关键词:TC4-DT钛合金 ; Johnson-Cook本构模型 ; Power-Law本构模型 ; 应变率 ; 分离式霍普金森压杆
  • 英文关键词:TC4-DT titanium alloy;;Johnson-Cook constitutive model;;Power-Law constitutive mode;;strain rate;;split Hopkinson pressure bar(SHPB)
  • 中文刊名:ZGJX
  • 英文刊名:China Mechanical Engineering
  • 机构:华侨大学制造工程研究院;华侨大学机电及自动化学院;
  • 出版日期:2017-03-02 14:54
  • 出版单位:中国机械工程
  • 年:2017
  • 期:v.28;No.461
  • 基金:福建省高校产学研合作科研重大项目(2014H6018);; 福建省自然科学基金资助项目(2016J01237);; 福建省高校杰出科研人才培养计划资助项目(JA14013)
  • 语种:中文;
  • 页:ZGJX201705019
  • 页数:10
  • CN:05
  • ISSN:42-1294/TH
  • 分类号:107-116
摘要
利用同步组装的高温分离式Hopkinson压杆试验装置,对TC4-DT钛合金材料分别进行了常温下不同应变率(930~9700s-1)和应变率为5000s-1时不同温度下(20~800℃)的动态力学性能测试,获得了各种冲击载荷下的应力-应变曲线。试验数据表明,TC4-DT材料具有应变率增塑效应且存在着临界应变率值,当应变率高于此值时应变率敏感性增强明显,此外随着材料加热温度的升高,软化效应减弱。利用试验所得的数据拟合了基于Power-Law和Johnson-Cook两种热-黏塑性本构方程且获得这两种动态本构模型参数,并将所得的两种拟合曲线与试验所得数据进行对比分析,结果表明两曲线吻合度都较好,此外还对这两种曲线的拟合精度进行对比,对比结果表明两种模型的拟合误差相差不大,但是Power-Law模型拟合精度要略优于Johnson-Cook模型的拟合精度。
        The dynamic mechanics behavior experiments of TC4-DT titanium alloy materials were carried out using high temperature Hopkinson bar with synchro assembly system SHPB apparatus under different strain rates(930~9700s-1)and at room temperature and under different temperature(20~800℃)at high strain rate(5000s-1)respectively.The stress-strain curves of TC4-DT titanium materials were obtained at high temperatures and high strain rates.The TC4-DT materials have the strain rate plasticity effect and have the critical strain rate value,above this value,the strain rate sensitivity increases obviously.The softening effect is weakened with the increase of heating temperature of the materials.The experimental data were fitted Power-Law and Johnson-Cook two kinds of thermal visco-plastic constitutive equation respectively;and the two kinds of dynamic constitutive model parameters were obtained.the two kinds of fitting curves and the experimental data obtained were compared and analyzed.The results show that the two model predictions have a good agreement with the experimental data.Futher,the fitting precision of the two curves were compared and results show that the fitting errors of the two models are not very different,but the precision of the Power-Law model is slightly better than that of Johnson-Cook model.
引文
[1]赵永庆,葛鹏.我国自主研发钛合金现状与进展[J].航空材料学报,2014,34(4):51-61.ZHAO Yongqing,GE Peng.Current Situation and Development of New Titanium Alloys Invented in China.[J]Journal of Aeronautical Materials,2014,34(4):51-61.
    [2]于兰兰,毛小南,李辉.温度对TC4-DT损伤容限型钛合金疲劳裂纹扩展行为的影响[J].稀有金属快报,2007,26(12):20-23.YU Lanlan,MAO Xiiaonan,LI Hui.Effects of Temperature on Fatigue Crack Growth Behavior of TC4-DT Damage Tolerance Titanium Alloy[J].Rare Metals Letters,2007,26(12):20-23.
    [3]刘清风,程鑫,王宁昌,等.动态冲击载荷下无氧铜的力学性能研究[J].机械强度,2015,180(4):607-612.LIU Qingfeng,CHENG Xin,WANG Ningchang,et al.Dynamic Mechanical Properties of Oxygen Free Copper Under the Impact Load[J].Journal of Mechanical Strength,2015,180(4):607-612.
    [4]郭伟国.一种新型奥氏体不锈钢的塑性流变行为研究[J].西北工业大学学报,2001,19(3):476-479.GUO Weiguo.PlasticFlow Behavior of a New Austenitic Stainless Steel AL6-XN under Different Strain Rates and Temperatures[J].Journal of Northwestern Poly Technical University,2001,19(3):476-479.
    [5]孔金星,陈辉,何宁,等.纯铁材料动态力学性能测试及本构模型[J].航空学报,2014,35(7):2063-2071.KONG Jinxing,CHEN Hui,HE Ning,et al.Dynamic Mechanial Property Tests and Constitutive Model of Pure Iron Material[J].Acta Aeronautica et Astronautica Sinica,2014,35(7):2063-2071.
    [6]Wang Y L,Hui S X,Liu R,et al.Dynamic Response and Plastic Deformation Behavior of Ti-5Al-2.5Sn ELI and Ti-8Al-1Mo-1V Alloys Under High-strain Rate[J].Rare Metals,2014,33(2):127-133.
    [7]张长清,谢兰生,陈明和,等.高应变率下TC4-DT钛合金的动态力学性能及塑性本构关系[J].中国有色金属学报,2015,25(2):323-329.ZHANG Changqing,XIE Lansheng,CHEN Minghe,et al.Dynamic Mechanical Property and Plastic Constitutive Relation of TC4-DT Ti Alloy under High Strain Rate[J].The Chinese Journal of Nonferrous Metals,2015,25(2):323-329
    [8]LIU J,ZENG W,ZHU Y,et al.Hot Deformation Behavior and Flow Stress Prediction of TC4-DT Alloy in Single-phase Region and Dual-phase Regions[J].Journal of Materials Engineering and Performance,2015,24(5):2140-2150.
    [9]张正礼.几种铝合金材料动态力学性能测试[J].中国民航大学学报,2014,32(1):41-45.ZHANG Zhengli.Testing of Dynamic Mechanical Property of Several Aluminum Alloy Materials[J].Journal of Civil Aviation University of China,2014,32(1):41-45.
    [10]DAVIES E D,HUNTER S C.The Dynamic Compression Testing of Solids by the Method of the Split Hopkinson Pressure Bar[J].Journal of the Mechanics and Physics of Solids,1963,11:155-179.
    [11]王晓燕,卢芳云,林玉亮.SHPB实验中端面摩擦效应研究[J].爆炸与冲击,2006,26(2):134-139.WANG Xiaoyan,LU Fangyun,LIN Yuliang,Study on Interfacial Friction Effect in The SHPB Tests[J].Explosion and Shock Waves,2006,26(2):134-139.
    [12]CHEN W,SONG B.Split Hopkinson(Kolsky)Bar[M].New York:Springer US,2011.
    [13]NEMAT-NASSER S,LI Y F,ISAACS J B.Experiments Computational Evaluation of Flow Stress at High Strain Rates with Application to Adiabatic Shear Banding[J].Mechanics of Materials,1994,17(2):111-134.
    [14]ARMSTONG R W,WALLEY S M.High Strain Rate Properties of Metals and Alloys[J].International Materials Reviews,2008,53(3):105-129.
    [15]李玉龙,索涛,郭伟国,等.确定材料在高温高应变率下动态性能的Hopkinson杆系统[J].爆炸与冲击,2005,25(6):487-492.LI Yulong,SUO Tao,GUO Weiguo,et al.Determination of Dynamic Behavior of Materials at Elevated Temperatures and High Strain Rates Using Hopkinson Bar[J].Explosion and Shock Waves,2005,25(6):487-492.
    [16]郭伟国.高温分离式Hopkinson压杆技术及其应用[J].实验力学,2006,21(4):447-453.GUO Weiguo,The Split Hopkinson Pressure Bar Technique of High Temperatures and Its Application[J].Journal of Experimental Mechanics,2016,21(4)447-453.
    [17]罗皎,李淼泉,李宏,等.TC4钛合金高温变形行为及其真实应力模型[J].中国有色金属学报,2008,18(8):1395-1401.LUO Jiao,LI Miaoquan,LI Hong,et al,High Temperature Deformation Behavior of TC4Titanium Alloy and Its Flows Stress Model[J].The Chinese Journal of Nonferrous Metals,2008,18(8):1395-1401.
    [18]黄志斌,万敏,伍惠,等.TC4钛合金神经网络本构模型及在有限元模拟中应用[J].塑性工程学报,2013,20(1):89-94.HUANG Zhibin,WAN Min,WU Hui,et al,Constitutive Model of Ti-6Al-4V-Alloy Based on Artificial Neural Network and Its Application on FEM Simulation[J].Journal of Plasticity Engineering,2013,20(1):89-94.
    [19]鲍俊瑶,徐超.TC11钛合金高温塑性本构方程研究[J].安徽建筑工业学院学报,1999,7(4):43-47.BAO Junyao,XU Chao.Research on Constitutive Equations for Hot Working of Metals[J].Journal of Anhui Institute of Architecture,1999,7(4):43-47.
    [20]PROULX T,TAMAOGI T,SOGABE Y.Examination of Validity for Viscoelastic Split Hopkinson Pressure Bar Method[M].New York:Springer US,2011:77-83.
    [21]RODRI GUEZ J,CORTES R,MARTINEZ M A,et al.Numerical Study of the Specimen Size Effect in the Split Hopkinson Pressure Bar Tests[J].Journal of Materials Science,1995,30(18):4720-4725.
    [22]SAWAS O,BRAR N S,BROCKMAN R A.Dynamic Characterization of Compliant Materials Using an Al-polymeric Split Hopkinson Bar[J].Experimental Mechanics,1998,38(3):204-210.
    [23]CHEN W,LU F,ZHOU B.A Quartz-crystal-embedded Split Hopkinson Pressure Bar for Soft Materials[J].Experimental Mechanics,2000,40(1):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700