用户名: 密码: 验证码:
电子束快速成形TC4合金的组织与断裂性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure and fracture property of electron beam rapidly manufactured TC4 alloy
  • 作者:童邵辉 ; 李东 ; 邓增辉 ; 方虎
  • 英文作者:TONG Shao-hui;LI Dong;DENG Zeng-hui;FANG Hu;The Engineering Training Center,Shanghai University of Engineering Science;School of Materials Engineering,Shanghai University of Engineering Science;
  • 关键词:电子束选区熔化 ; 断裂性能 ; 各向异性 ; α相形态 ; 断口
  • 英文关键词:electron beam selective melting;;fracture property;;anisotropy;;α phase morphology;;fracture
  • 中文刊名:CLGC
  • 英文刊名:Journal of Materials Engineering
  • 机构:上海工程技术大学工程实训中心;上海工程技术大学材料工程学院;
  • 出版日期:2019-01-11 11:00
  • 出版单位:材料工程
  • 年:2019
  • 期:v.47;No.428
  • 基金:国家自然科学基金项目(51405288)
  • 语种:中文;
  • 页:CLGC201901019
  • 页数:6
  • CN:01
  • ISSN:11-1800/TB
  • 分类号:129-134
摘要
利用超景深显微镜和扫描电镜对电子束选区熔化快速成形的沉积态TC4试样组织与断口形貌进行观察和分析,研究不同几何成形和加载方向对断裂性能的影响。结果表明,断裂性能在垂直试样中受到柱状晶组织的影响,具有各向异性,在沉积方向上的断裂韧度为94.94MPa·m~(1/2),大于电子束扫描方向的断裂韧度85.33MPa·m~(1/2),而伸长率很小,仅为3%;α相形态对断裂性能有影响:水平试样片层状的α集束组织伸长率及断裂韧度优于垂直试样相互交错的针状α组织,最大值为14.5%和101.45MPa·m~(1/2),而抗拉强度和屈服强度较小;电子束选区熔化制备的TC4试样断口由许多不同尺寸的韧窝和弯曲的撕裂棱组成,断裂方式以延性韧窝状沿晶断裂为主,水平试样的断口撕裂棱曲折程度、韧窝尺寸和深度大于垂直试样。
        Microstructure and fracture morphologies of as-deposited TC4 samples fabricated by rapid manufacture of electron beam selective melting(EBSM) were observed and analyzed by a digital microscope and a scanning electron microscope respectively. The influence of different build geometries and load directions on the fracture properties was studied. The results indicate that fracture properties of vertical samples are influenced by columnar crystals and characterized by its anisotropy. The fracture toughness(K_(IC)) in the deposition direction of vertical samples is 94.94 MPa·m~(1/2), which is greater than that in the electron beam scanning direction(85.33 MPa·m~(1/2)), and the elongation(δ) of 3% is very low; α morphology has some influence on the fracture properties. The elongation(δ) and fracture toughness(K_(IC)) in horizontal samples with lamellar α colony are greater than that in vertical samples with crossed acicular α, and the maximum is 14.5% and 101.45 MPa·m~(1/2), while the ultimate tensile strength(σ_b) and the yield strength(σ_(0.2)) are lower; furthermore, the fracture of EBSM-TC4 samples consists of different sizes of dimples and circuitous tearing ridges. So the fracture method is characterized by ductile dimple-based intergranular fracture and the circuitous degree of tearing ridges as well as size and depth of dimples on the fracture morphologies of horizontal samples are greater than that in vertical samples.
引文
[1] FRAZIER W E. Metal additive manufacturing: a review[J]. Journal of Materials Engineering and Performance,2014, 23(6): 1917-1928.
    [2] MURR L E. Metallurgy of additive manufacturing: examples from electron beam melting[J]. Additive Manufacturing, 2015, 5:40-53.
    [3] 巩水利,锁红波,李怀学. 金属增材制造技术在航空领域的发展与应用[J]. 航空制造技术, 2013(13): 66-71. GONG S L,SUO H B,LI H X. Development and application of metal additive manufacturing technology[J]. Aeronautical Manufacturing Technology, 2013(13): 66-71.
    [4] 张学军,唐思熠,肇恒跃,等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016,44(2): 122-128. ZHANG X J,TANG S Y,ZHAO H Y,et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering,2016,44(2): 122-128.
    [5] JAMSHIDINIA M, WANG L,TONG W, et al. Fatigue properties of a dental implant produced by electron beam melting~?(EBM)[J]. Journal of Materials Processing Technology, 2015, 226: 255-263.
    [6] GONG H,RAFI K,STARR T,et al. The effects of processing parameters on defect regularity in Ti-6Al-4V parts fabricated by selective laser melting and electron beam melting[C]//Proceedings of the 24~(th) Solid Freeform Fabrication Symposium. Austin,US:University of Texas, 2013: 424-439.
    [7] GUO C, GE W J, LIN F. Effects of scanning parameters on material deposition during electron beam selective melting of Ti-6Al-4V powder[J]. Journal of Materials Processing Technology, 2015, 217:148-157.
    [8] BAUEREI? A, SCHAROWSKY T, K?RNER C. Defect generation and propagation mechanism during additive manufacturing by selective beam melting[J]. Journal of Materials Processing Technology, 2014, 214(11):2522-2528.
    [9] WANG X Q,GONG X B,CHOU K. Scanning speed effect on mechanical properties of Ti-6Al-4V alloy processed by electron beam additive manufacturing[J]. Procedia Manufacturing,2015,1: 287-295.
    [10] 杨鑫,奚正平,刘咏,等. 电子束选区熔化技术对钛合金组织和力学性能的影响[J]. 稀有金属材料与工程, 2009, 38(7): 1272-1275. YANG X, XI Z P, LIU Y, et al. Effect of electron beam selective melting on the microstructure and mechanical properties of Ti alloy[J]. Rare Metal Materials and Engineering, 2009, 38(7): 1272-1275.
    [11] HRABE N, QUINN T. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM), part 1: distance from build plate and part size[J]. Materials Science and Engineering:A,2013,573: 264-270.
    [12] CAIN V, THIJS L, Van HUMBEECK J, et al. Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting[J]. Additive Manufacturing,2015,5: 68-76.
    [13] 党薇,薛祥义,李金山,等. TC21合金片层组织特征对其断裂韧性的影响[J]. 中国有色金属学报, 2010, 20(增刊1): 16-20. DANG W, XUE X Y, LI J S, et al. Influence of lamellar microstructure feature on fracture toughness of TC21 alloy[J]. The Chinese Journal of Nonferrous Metals,2010, 20(Suppl 1): 16-20.
    [14] 周永峰,胡树兵,肖建中,等. TC4钛合金板材电子束焊接疲劳性能[J]. 材料科学与工程学报, 2010, 28(1): 130-135. ZHOU Y F,HU S B,XIAO J Z,et al. Fatigue properties of electron beam welded joints of TC4 titanium alloy sheets[J]. Journal of Materials Science & Engineering, 2010, 28(1): 130-135.
    [15] 彭小娜,郭鸿镇,石志峰,等. 近等温变形量对TC4-DT钛合金组织参数和拉伸性能的影响[J]. 航空材料学报, 2013, 33(3): 18-24. PENG X N, GUO H Z, SHI Z F, et al. Effects of near-isothermal deformation amounts on microstructure parameters and tensile properties of TC4-DT titanium alloy[J]. Journal of Aeronautical Materials, 2013, 33(3): 18-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700