用户名: 密码: 验证码:
急倾斜煤层伪俯斜走向长壁工作面煤壁破坏机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Coal wall failure mechanism of longwall working face with false dip in steep coal seam
  • 作者:杨胜利 ; 赵斌 ; 李良晖
  • 英文作者:YANG Shengli;ZHAO Bin;LI Lianghui;School of Engineering and Mining,China University of Mining and Technology(Beijing);Research Center of Top-coal Caving Mining in Coal Mining Industry;
  • 关键词:急倾斜煤层 ; 走向长壁 ; 煤壁破坏机理 ; 伪俯斜工作面
  • 英文关键词:steep coal seam;;longwall mining;;coal wall failure mechanism;;false dip face
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:中国矿业大学(北京)能源与矿业学院;放顶煤开采煤炭行业工程研究中心;
  • 出版日期:2019-02-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.293
  • 基金:国家自然科学基金资助项目(51574244,51674264)
  • 语种:中文;
  • 页:MTXB201902004
  • 页数:10
  • CN:02
  • ISSN:11-2190/TD
  • 分类号:23-32
摘要
急倾斜煤层走向长壁工作面煤壁和底板容易发生破坏,严重影响工作面的正常推进。通过理论建模、底摩擦实验、数值计算等方法,研究了煤层顶板破断与冒落矸石滑动特征,揭示了不同煤层赋存和开采条件下煤壁破坏机理,并提出了防治煤壁破坏与底板滑移的具体措施。研究发现:急倾斜煤层走向长壁工作面顶板冒落的矸石会对采空区形成不同程度的充填,自下而上依次为"密实充填段"、"不均匀充填段"、"非充填段"3段,而工作面中上部区域由于充填不充分,动压现象明显,容易造成严重的煤壁片帮和底板滑移现象,支架的工况随之也会变差,成为整个工作面围岩稳定性最脆弱的区域,严重影响到工作面的安全高效生产,是采场围岩控制的重点区域;工作面底板稳定性显著影响煤壁的稳定性,实际生产中发现,在煤层赋存和开采条件不同时,煤壁破坏一般会呈现出"塑性-流动"、"挤出-滑移"、"剪切-滑移"3种破坏模式;工作面采用伪俯斜布置不仅可以显著提高煤壁和底板的稳定性,也可以有效阻止液压支架倾倒和下滑,还可以避免工作面飞矸发生,配合整体推刮板输送机和"柔性加固煤壁"等技术可以实现急倾斜煤层走向长壁工作面安全高效开采,有效解决急倾斜煤层机械化开采所面临的一系列岩层控制难题。
        The coal wall and floor of the longwall face in the steeply inclined coal seam are prone to damage,which seriously affects the advance of the working face.By establishing theoretical model,bottom friction experiments,numerical calculations,etc.,the characteristics of coal seam roof breaking and caving rock sliding are studied,and the coal wall failure mechanism under different coal seam occurrence and mining conditions is revealed. The concrete measures to prevent coal wall damage and floor slip are put forward.The study shows that the caving rock from the roof of the longwall face in steeply inclined coal seams will form different degrees of filling in the goaf. From bottom to top,it forms three sections including "compact filling section","uneven filling section"and "non-filling section".However,due to insufficient filling in the upper part of the working face,the dynamic pressure phenomenon is obvious,which is likely to cause serious coal wall slab and bottom plate slip phenomenon,and the working condition of the support will also become worse,which becomes the most unstable surrounding rock of the whole working face.The fragile area seriously affects the safe and efficient production of the working face,and is the key area for the surrounding rock control of the working face.The stability of the working floor is significantly affected by the stability of the coal wall.In actual production,it is found that when the coal seam occurrence and mining conditions are different,the coal wall failure generally presents three failure modes: "plastic-flow","extrusion-slip"and "shear-slip".The use of a pseudo-tilt arrangement at the working face not only can significantly improve the stability of the coal wall and the bottom plate,but also effectively prevent the hydraulic support from falling and sliding,and can also avoid the occurrence of flying gangue at the working face.With the integration of conveyor and the "flexible reinforced coal wall",it is possible to realize the safe and efficient mining of longwall working face in steep coal seam,and effectively solve a series of rock formation control problems faced by the mechanized mining of steep coal seam.
引文
[1]杨胜利,赵斌,杨毅.急倾斜厚煤层水平分段综放覆岩破坏模式实验研究[J].煤炭工程,2017,49(10):7-11,15.YANG Shengli,ZHAO Bin,YANG Yi. Experimental study on failure mode of horizontal sublevel caving in steeply inclined thick coal seam[J].Coal Engineering,2017,49(10):7-11,15.
    [2]伍永平,郎丁,解盘石.大倾角软煤综放工作面煤壁片帮机理及致灾机制[J].煤炭学报,2016,41(8):1878-1884.WU Yongping, LANG Ding, XIE Panshi. Mechanism of disaster due to rib spalling at fully-mechanized top coal caving face in soft steeply dip-ping seam[J]. Journal of China Coal Society,2016,41(8):1878-1884.
    [3]解盘石,伍永平.大倾角煤层长壁大采高开采煤壁片帮机理及防控技术[J].煤炭工程,2015,47(1):74-77.XIE Panshi,WU Yongping. Mechanism and control methods of rib spalling in steeply dipping thickseams in fully-mechanized longwall mining with large mining height[J]. Coal Engineering,2015,47(1):74-77.
    [4]李建国,田取珍,杨双锁.综采放顶煤工作面俯、仰斜开采对煤壁片帮的影响机理研究[J].太原理工大学学报,2004(4):407-409.LI Jianguo,TIAN Jiazhen,YANG Shuangsuo. The effecting principle of dip and rise mining on rib fall in full-mechanized caving face[J].Journal of Taiyuan University of Technology,2004(4):407-409.
    [5]曹树刚,徐健,雷才国,等.复杂条件下急倾斜综采工作面支架适应性分析[J].煤炭学报,2010,35(10):1599-1603.CAO Shugang,XU Jian,LEI Caiguo,et al. The stent adaptability of steep fully mechanized working face under the complex conditions[J].Journal of China Coal Society,2010,35(10):1599-1603.
    [6]屠洪盛.薄及中厚急倾斜煤层长壁综采覆岩运动规律与控制机理研究[D].徐州:中国矿业大学,2014.TU Hongsheng. Overlying Strata movement law and control mechanism of fully mechanised longwall mining face in thin and medium thickness steeply inclined coal seam[D].Xuzhou:China University of Mining and Technology,2014.
    [7]陈显坤.急倾斜松软煤层综合机械化开采技术研究[D].西安:西安科技大学,2013.CHEN Xiankun.Research on fully mechanized mining technology in steep and soft seam[D]. Xi’an:Xi’an University of Science and Technology,2013.
    [8]王家臣,赵兵文,赵鹏飞,等.急倾斜极软厚煤层走向长壁综放开采技术研究[J].煤炭学报,2017,42(2):286-292.WANG Jiachen,ZHAO Bingwen,ZHAO Pengfei,et al. Research on the longwall top-coal caving mining technique in extremely inclined and soft thick coal seam[J]. Journal of China Coal Society,2017,42(2):286-292.
    [9] PAPPAS D M,BAUER E R,MARK C.Roof and rib fall incidents and statistics:A recent profile[A]. Proceedings New Technology for Coal Mine[C].Pittsburgh:2000:3-21.
    [10] SEEDSMAN R.Joint structure and coal strength as controls on rib stability[A].Proceedings of the 7th Underground Coal Operators’Conference[C].Wollongong:University of Wollongong,2006.
    [11] BAUER E R,DOLINAR D R.Skin failure of roof and rib and support techniques in underground coal mines[A]. Proceedings of the18th International Conference on Ground Control in Mining[C].Morgantown,2000.
    [12]杨胜利,孔德中,杨敬虎,等.综放仰斜开采煤壁稳定性及注浆加固技术[J].采矿与安全工程学报,2015,32(5):827-833,839.YANG Shengli,KONG Dezhong,YANG Jinghu,et al.Coal wall stability and grouting reinforcement technique in fully mechanized caving face during topple mining[J]. Journal of Mining and Safety Engineering,2015,32(5):827-833,839.
    [13]杨胜利,孔德中.大采高煤壁片帮防治柔性加固机理与应用[J].煤炭学报,2015,40(6):1361-1367.YANG Shengli,KONG Dezhong.Flexible reinforcement mechanism and its application in the control of spalling at large mining height coal face[J]. Journal of China Coal Society,2015,40(6):1361-1367.
    [14]孔德中,杨胜利,高林,等.基于煤壁稳定性控制的大采高工作面支架工作阻力确定[J].煤炭学报,2017,42(3):590-596.KONG Dezhong,YANG Shengli,GAO Lin,et al. Determination of support capacity based on coal face stability control[J]. Journal of China Coal Society,2017,42(3):590-596.
    [15]张均锋,王思莹,祈涛.边坡稳定分析的三维Spencer法[J].岩石力学与工程学报,2005,24(19):36-41.ZHANG Junfeng,WANG Siying,QI Tao. Three-Dimensional spencer method for slope stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(19):36-41.
    [16]王家臣,谭文辉.边坡渐进破坏三维随机分析[J].煤炭学报,1997,22(1):29-33.WANG Jiachen,TAN Wenhui. Three Dimensional stochastic analysis of slope progressive failure[J]. Journal of China Coal Society,1997,22(1):29-33.
    [17] MORGENSTERN N R,PRICE V E. The analysis of the stability of general slip surfaces[J].Geotechnique,1965,15(1):79-93.
    [18] CHEN R H,CHAMEAU J L.Three-dimensional limit equilibrium analysis of slopes[J].Geotechnique,1982,32(1):31-40.
    [19] ANAGNOSTI P. Three-dimentional stability of fill dam[A]. The7th Int. Conf. Soil Mechanices and Foundations[C]. 1969:275-280.
    [20] HUANG C C,TSAI C C.New method for 3D and asymmetrical slope stability analysis[J].J.Geotech.Geoenviron.Engrg,2000,126(10):917-927.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700