用户名: 密码: 验证码:
综放工作面煤柱巷道软岩底板非对称底臌机理与控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanism and control strategy of asymmetrical floor heave of coal pillar roadway in fully mechanized caving face
  • 作者:贾后省 ; 王璐瑶 ; 刘少伟 ; 彭博 ; 张伟光 ; 范凯
  • 英文作者:JIA Housheng;WANG Luyao;LIU Shaowei;PENG Bo;ZHANG Weiguang;FAN Kai;School of Energy Science and Engineering,Henan Polytechnic University;Collaborative Innovation Center of Coal Work Safety Henan Province,Henan Polytechnic University;Xingjiang Institute of Engineering,Mining Engineering and Geology College;Sichuan HuaYingShan Longtan Coal and Electricity Co.,Ltd.;
  • 关键词:综放工作面 ; 煤柱巷道 ; 底臌 ; 非对称变形 ; 塑性区
  • 英文关键词:fully mechanized caving face;;coal pillar roadway;;floor heave;;asymmetrical deformation;;plastic zone
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:河南理工大学能源科学与工程学院;河南理工大学煤炭安全生产河南省协同创新中心;新疆工程学院矿业工程与地质学院;四川华蓥山龙滩煤电有限责任公司;
  • 出版日期:2019-04-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.295
  • 基金:国家自然科学基金资助项目(51604094,51674098);; 河南省重点研发与推广专项科技攻关资助项目(182102210316)
  • 语种:中文;
  • 页:MTXB201904007
  • 页数:11
  • CN:04
  • ISSN:11-2190/TD
  • 分类号:62-72
摘要
针对综放工作面煤柱巷道非对称底臌剧烈、支护维护困难、起底工程量大等难题,以大南湖一矿综放工作面煤柱巷道为工程背景,采用理论分析、数值模拟、现场试验等综合研究方法,分析了煤柱巷道围岩周边应力环境特征及其作用下的变形破坏形态。结果表明:煤柱巷道底板强度低下以及在采动影响下围岩应力环境出现非均匀现象,进而导致巷道底板塑性区出现非均匀分布,是造成非对称底臌的内在原因;底臌变形规律监测结果显示,非对称底臌程度与放煤厚度有内在联系,放煤厚度在5.9 m范围内,放煤厚度越大,基本顶岩层破断偏转角度亦越大,巷道围岩周边主应力比值、主应力旋转角度等参数越大,底板塑性破坏引起的非对称底臌变形越剧烈;底板最大塑性破坏深度位置随着主应力方向旋转角度的增加,逐渐向巷道中部位置移动,导致底臌变形最大位置分布不同,同时,煤柱巷道的这种底臌变形可控性较差,现有技术条件下企图采用高强支护是不可行的,控制上应以适应底臌变形为主;然而,当放煤厚度超过5. 9 m,基本顶岩层有沿煤柱边缘失稳切落的可能,巷道围岩应力环境趋于原岩应力状态,巷道围岩塑性区分布范围大幅降低,底臌变形较小。据此,以巷道非对称底臌规律为依据,提出了以调整采掘关系、优化巷道底臌硬化方案为主的底臌控制对策,现场应用效果良好,底臌变形量有效减少的同时,巷道底臌处理工作量亦大幅降低。
        To study the problems such as dramatic asymmetrical floor heave deformation of coal pillar roadway in fully mechanized caving face,difficulty in support and maintenance,theoretical analysis,numerical simulation and field test were adopted. The stress environment, deformation and failure characteristics of the coal pillar roadway in the fully mechanized caving face at Dananhu No. 1 coal mine in China were analyzed. The results demonstrate that the asymmetrical phenomenon of surrounding rock stress environment caused by mining is the intrinsic reason for the asymmetrical floor heave in the coal pillar roadway. It also leads to a non-uniform distribution of the plastic zone of floor in coal pillar roadway. The degree of asymmetrical floor heave has internal relations with the thickness of caving coal. When the thickness of caving coal is in the range of 5.9 m, the greater the parameters, such as the thickness of the caving coal,the breaking deflection angle of the strata of main roof,the principal stress ratio and the rotation angle of the principal stress direction in the stress environment of the roadway,the more obvious deformation of asymmetrical floor heave caused by plastic failure in floor. The maximum plastic failure depth position of the floor gradually moves toward the middle of the roadway as the rotation angle of the principal stress direction increases. It causes a different distribution of the maximum deformation position of floor heave. At the same time,the deformation of the floor heave of the coal pillar roadway is poorly controllable. It is not feasible to attempt to use high-strength support under the current technical condition. The control should mainly be adapted to the floor heave deformation. When the thickness of caving coal more than 5.9 m, the strata of main roof have the possibility of instability and being cut along the edge of the coal pillar, and the surrounding rock stress environment of the roadway tends to the original rock stress state. Consequently,the distribution range of the surrounding rock plastic zone is greatly reduced in the roadway. The deformation of floor heave is small. Based on the results above,the strategy of floor heave control based on adjusting the relationship of mining and driving, and optimizing the roadway floor heave treatment plan was proposed and good results were obtained. With the decrease of deformation of the floor heave,the working volume of floor heave was also greatly reduced.
引文
[1]侯朝炯.巷道围岩控制[M].徐州:中国矿业大学出版社,2013:1-3.
    [2] ZHAO Zhiqiang,MA Nianjie,JIA Housheng. Partitioning characteristics of gas channel of coal-rock mass in mining space and gas orientation method[J]. International Journal of Mining Science and Technology,2013,23(6):873-877.
    [3]刘泉声,肖虎,卢兴利,等.高地应力破碎软岩巷道底臌特性及综合控制对策研究[J].岩土力学,2012,33(6):1703-1709.LIU Quansheng, XIAO Hu, LU Xingli, et al. Research on floor heave characteristics of broken soft rocks with high geostress and its comprehensive control measures[J]. Chinese Journal of Geotechnical Engineering,2012,33(6):1703-1709.
    [4]刘泉声,刘学伟,黄兴,等.深井软岩破碎巷道底臌原因及处置技术研究[J].煤炭学报,2013,38(4):566-571.LIU Quansheng,LIU Xuewei,HUANG Xing,et al. Research on the floor heave reasons and supporting measures of deep soft-fractured rock roadway[J]. Journal of China Coal Society,2013,38(4):566-571.
    [5]华心祝,卢小雨,李迎富.深井大断面沿空留巷底臌防控技术[J].煤炭科学技术,2013,41(9):100-104.HUA Xinzhu,LU Xiaoyu,LI Yingfu. Prevention and control technology of floor heave in gob-side entry retaining with large section of deep mine[J]. Coal Science and Technology,2013,41(9):100-104.
    [6] JIANG L,MITRI H S,MA N,et al. Effect of foundation rigidity on stratified roadway roof stability in underground coal mines[J]. Arabian Journal of Geosciences,2016,9(1):1-12.
    [7]张登龙,华心祝.深部矿井Y型通风沿空留巷围岩控制技术[J].煤炭科学技术,2010,38(12):29-32.ZHANG Denglong,HUA Xinzhu. Surrounding rock control technology of gateway driven a long goaf with Y type ventilation in deep mine[J]. Coal Science and Technology,2010,38(12):29-32.
    [8]侯朝炯,马念杰.煤层巷道两帮煤体应力和极限平衡区的探讨[J].煤炭学报,1989(4):21-29.HOU Chaojiong,MA Nianjie. Stress in in-seam roadway sides and limit equillbrlum zone[J]. Journal of China Coal Society, 1989(4):21-29.
    [9]侯朝炯.深部巷道围岩控制的关键技术研究[J].中国矿业大学学报,2017,46(5):970-978.HOU Chaojiong. Key technologies for surrounding rock control in deep roadway[J]. Journal of China University of Mining&Technology,2017,46(5):970-978.
    [10]侯朝炯.深部巷道围岩控制的有效途径[J].中国矿业大学学报,2017,46(3):467-473.HOU Chaojiong. Effective approach for surrounding rock control in deep roadway[J]. Journal of China University of Mining&Technology,2017,46(3):467-473.
    [11]何满潮,张国锋,王桂莲,等.深部煤巷底臌控制机制及应用研究[J].岩石力学与工程学报,2009,28(S):2593-2598.HE Manchao, ZHANG Guofeng, WANG Guilian,et al. Research on mechanism and application to floor heave control of deep gateway[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(S):2593-2598.
    [12]杨生彬,何满潮,刘文涛,等.底角锚杆在深部软岩巷道底臌控制中的机制及应用研究[J].岩石力学与工程学报,2008,27(S1):2913-2920.YANG Shengbin,HE Manchao,LIU Wentao,et al. Mechanics and application research on the floor anchor to control the floor heave of deep soft rock roadway[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(S1):2913-2920.
    [13] LI Guofeng, HE Manchao, ZHANG Guofeng, et al. Deformation mechanism and excavation process of large span intersection within deep soft rock roadway[J]. Mining Science and Technology,2010,20(1):28-34.
    [14]康红普,陆士良.巷道底臌机理的分析[J].岩石力学与工程学报,1991,10(4):362-373.KANG Hongpu, LU Shiliang. An analysis on the mechanism of roadway floor heave[J]. Chinese Journal of Rock Mechanics and Engineering, 1991,10(4):362-373.
    [15]康红普.软岩巷道底臌的机理及防治[M].北京:煤炭工业出版社,1993.
    [16]康红普.应力状态及围岩性质对巷道底臌的影响[J].矿山压力与顶板管理,1994,11(2):43-46.KANG Hongpu. Studies of stress state and rock properties on floor heave[J]. Ground Pressure and Strata Control, 1994,11(2):43-46.
    [17] KANG H P,LI J Z,YANG J H,et al. Investigation on the influenceof abutment pressure on the stability of rock bolt reinforced roof strata through physical and numerical modeling[J]. Rock Mechanics and Rock Engineering,2017,50(2):387-401.
    [18]KANG H P,LOU J F,GAO F Q,et al. A physical and numerical investigation of sudden massive roof collapse during longwall coal retreat mining[J]. International Journal of Coal Geology,2018,188:25-36.
    [19]柏建彪,李文峰,王襄禹,等.采动巷道底臌机理与控制技术[J].采矿与安全工程学报,2011,28(1):1-5.BAI Jianbiao, LI Wenfeng,WANG Xiangyu,et al. Mechanism of floor heave and control technology of roadway induced by mining[J]. Journal of Mining&Safety Engineering,2011,28(1):1-5.
    [20]杨本生,贾永丰,孙利辉,等.高水平应力巷道连续“双壳”治理底臌实验研究[J].煤炭学报,2014,39(8):1504-1510.YANG Bensheng,JIA Yongfeng,SUN Lihui,et al. Experimental research on the continuous"double shell"harnessing floor heave in high horizontal stress roadway[J]. Journal of China Coal Society,2014,39(8):1504-1510.
    [21]杨本生,耿学良,孙利辉,等.五阳矿厚煤层巷道底臌机制及控制研究[J].采矿与安全工程学报,2012,29(1):8-13.YANG Bensheng,GENG Xueliang,SUN Lihui,et al. Research on floor heave mechanism of thick seam roadway in Wuyang coal mine and its control[J]. Journal of Mining&Safety Engineering,2012,29(1):8-13.
    [22]杨本生,贾永丰,孙利辉,等.高水平应力巷道连续“双壳”治理底臌实验研究[J].煤炭学报,2014,39(8):1504-1510.YANG Bensheng,JIA Yongfeng,SUN Lihui,et al. Experimental research on the continuous"double shell"harnessing floor heave in high horizontal stress roadway[J]. Journal of China Coal Society,2014,39(8):1504-1510.
    [23]孙利辉,杨本生,杨万斌,等.深部巷道连续双壳加固机理与实验研究[J].采矿与安全工程学报,2013,30(5):687-691.SUN Lihui, YANG Bensheng, YANG Wanbin, et al. Reinforcement mechanism and experimental study on continuous double shell of deep roadway[J]. Journal of Mining&Safety Engineering,2013,30(5):687-691.
    [24]赵志强,靳俊晓,申金超.石门揭煤中煤体塑性区跃迁特征与诱突机制[J].岩石力学与工程学报,2019,38(2):343-352.ZHAO Zhiqiang,JIN Junxiao,SHEN Jinchao. Promotion characteristics and induced outburst mechanisms of coal plastic zones in rock cross-cut coal uncovering[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(2):343-352.
    [25]赵志强,马念杰,刘洪涛,等.巷道蝶形破坏理论及其应用前景[J].中国矿业大学学报,2018,47(5):969-978.ZHAO Xidong, MA Nianjie, LIU Hongtao,et al. A butterfly failure theory of rock mass around roadway and its application prospect[J]. Journal of China University of Mining&Technology,2018,47(5):969-978.
    [26]马念杰,李季,赵志强.圆形巷道围岩偏应力场及塑性区分布规律研究[J].中国矿业大学学报,2015,44(2):206-213.MA Nianjie, LI Ji,ZHAO Zhiqiang. Distribution of the deviatoric stress field and plastic zone in circular roadway surrounding rock[J]. Journal of China University of Mining&Technology,2015,44(2):206-213.
    [27]王卫军,袁超,余伟健,等.深部大变形巷道围岩稳定性控制方法研究[J].煤炭学报,2016,41(12):2921-2931.WANG Weijun, YUAN Chao, YU Weijian,et al. Stability control method of surrounding rock in deep roadway with large deformation[J]. Journal of China Coal Society, 2016,41(12):2921-2931.
    [28]王卫军,袁超,郭罡业,等.强烈采动作用下岩巷围岩塑性区恶性扩展的控制研究[J].采矿与安全工程学报,2016,33(6):957-964.WANG Weijun,YUAN Chao,GUO Gangye,et al. Control of malignant expansion of plastic zone in surrounding rock of rock roadway under the conditions of violent mining[J]. Journal of Mining&Safety Engineering,2016,33(6):957-964.
    [29] YU Weijian, WANG Weijun,CHEN Xinyuan. Field investigations of high stress soft surrounding rocks and deformation control[J].Journal of Rock Mechanics and Geotechnical Engineering, 2015,7(4):421-433.
    [30]马念杰,冯吉成,吕坤,等.煤巷冒顶成因分类方法及其支护对策研究[J].煤炭科学技术,2015,43(6):34-40.MA Nianjie,FENG Jicheng,L(U|¨)Kun,et al. Study on cause classification method and support countermeasures of roof falling in coal drift[J]. Coal Science and Technology,2015,43(6):34-40.
    [31]贾后省,马念杰,朱乾坤.巷道顶板蝶叶塑性区穿透致冒机理与控制方法[J].煤炭学报,2016,41(6):1384-1392.JIA Housheng, MA Nianjie, ZHU Qiankun. Mechanism and control method of roof fall resulted from butterfly plastic zone penetration[J]. Journal of China Coal Society,2016,41(6):1384-1392.
    [32]钱鸣高,石平五,许家林.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010:86-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700