用户名: 密码: 验证码:
有界区域Weyl规范下具有周期间断系数Maxwell-Dirac系统多尺度算法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:THE MULTISCALE ALGORITHMS FOR THE MAXWELL-DIRAC SYSTEM WITH RAPIDLY OSCILLATING DISCONTINUOUS COEFFICIENTS IN A BOUNDED CONVEX LIPSCHITZ DOMAIN UNDER THE WEYL GAUGE
  • 作者:付姚姚 ; 曹礼群 ; 马楚鹏
  • 英文作者:Fu Yaoyao;Cao Liqun;Ma Chupeng;University of Chinese Academy of Sciences;Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences;LSEC, NCMIS, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences;Department of Applied Mathematics, The Hong Kong Polytechnic University;
  • 关键词:Maxwell-Dirac系统 ; 均匀化 ; 多尺度渐近展开式 ; 时间分裂谱方法 ; 自适应棱单元方法
  • 英文关键词:Maxwell-Dirac system;;homogenization;;the multiscale asymptotic method;;time-splitting spectral method;;finite element method
  • 中文刊名:SZJS
  • 英文刊名:Journal on Numerical Methods and Computer Applications
  • 机构:中国科学院大学;中国科学院数学与系统科学研究院计算数学与科学工程计算研究所;中国科学院数学与系统科学研究院计算数学与科学工程计算研究所科学与工程计算国家重点实验室国家数学与交叉科学中心;香港理工大学应用数学系;
  • 出版日期:2019-06-14
  • 出版单位:数值计算与计算机应用
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金重点项目(91330202)和面上项目(11571353)资助
  • 语种:中文;
  • 页:SZJS201902004
  • 页数:19
  • CN:02
  • ISSN:11-2124/TP
  • 分类号:33-51
摘要
Maxwell-Dirac系统及修正形式在拓扑绝缘体、石墨烯、超导等材料中有着十分广泛的应用,本文针对有界区域Weyl规范下具有周期间断系数Maxwell-Dirac系统,提出了该系统解的多尺度渐近展开式,结合时间分裂谱和自适应棱单元方法,发展了一类新型高效算法.数值计算结果表明该算法在处理上述时-空多尺度问题时十分有效.
        The Maxwell-Dirac system has wide applications in materials science such as topological insulators, graphene, superconductors and so on. In this paper, we first present the homogenization method and the multiscale asymptotic method for the Maxwell-Dirac system with rapidly oscillating discontinuous coefficients in a bounded convex Lipschitz domain under the Weyl gauge. Based on the multiscale asymptotic expansions of the solution of the Maxwell-Dirac system, combining the time-splitting spectral method and the adaptive edge element method, we develop multiscale algorithms for solving the Maxwell-Dirac system with rapidly oscillating discontinuous coefficients and can deal with the multiscale problems with multiple time and space scales. Numerical examples are then carried out to validate the method presented in this paper.
引文
[1] Abenda S. Solitary waves for Maxwell-Dirac and Coulomb-Dirac models[C]. Annales de l'Institut Henri Poincare-A Physique Theorique. Paris:Gauthier-Villars, c1983-c1999., 1998, 68(2):229.
    [2] Aharonov Y, Bohm D. Significance of electromagnetic potentials in the quantum theory[J]. Physical Review, 1959, 115(3):485-491.
    [3] Bao W, Li X G. An efficient and stable numerical method for the Maxwell-Dirac system[J]. Journal of Computational Physics, 2004, 199(2):663-687.
    [4] Bechouche P, Mauser N J.(Semi)-nonrelativistic limits of the Dirac equation with external timedependent electromagnetic field[J]. Communications in Mathematical Physics, 1998, 197(2):405-425. 1
    [5] Bensoussan A, Lions J L, Papanicolaou G. Asymptotic analysis for periodic structures[M]. NorthHolland, Amsterdam, 1978.
    [6] Bernevig B A, Hughes T L. Topological insulators and topological superconductors[M]. Princeton University Press, 2013.
    [7] Bjorken J D, Drell S D. Relativistic Quantum Mechanics[M]. McGraw-Hill, 1965.
    [8] Cao L Q, Zhang Y, Allegretto W and Lin Y P. Multiscale asymptotic method for Maxwell's equations in composite materials[J]. SIAM Journal on Numerical Analysis, 2010, 47(6):4257-4289.
    [9] Chadam J M. Global solutions of the Cauchy problem for the(classical)coupled Maxwell-Dirac equations in one space dimension[J]. Journal of Functional Analysis, 1973, 13(2):173-184.
    [10] Chadam J M, Glassey R T. On the Maxwell-Dirac equations with zero magnetic field and their solution in two space dimensions[J]. Journal of Mathematical Analysis and Applications, 1976,53(3):495-507.
    [11] Cioranescu D, Donato P. An Introduction to Homogenization, volume 17 of Oxford Lecture Series in Mathematics and its Applications[J]. The Clarendon Press Oxford University Press, New York.2000, 10(31):106-109.
    [12] D'Ancona P, Foschi D, Selberg S. Null structure and almost optimal local well-posedness of the Maxwell-Dirac system[J]. American Journal of Mathematics, 2010, 132(3):771-839.
    [13]'Ancona P, Selberg S. Global well-posedness of the Maxwell-Dirac system in two space dimensions[J]. Journal of Functional Analysis, 2011, 260(8):2300-2365.
    [14] Esteban M J, Georgiev V, SeréE. Stationary solutions of the Maxwell-Dirac and the KleinGordon-Dirac equations[J]. Calculus of Variations and Partial Differential Equations, 1996, 4(3):265-281.
    [15] Esteban M J, Sere E. An overview on linear and nonlinear Dirac equations[J]. Discrete&Continuous Dynamical Systems-A, 2002, 8(2):381-397.
    [16] Flato M, Taflin E, Simon J. On global solutions of the Maxwell-Dirac equations[J]. Communications in Mathematical Physics, 1987, 112(1):21-49.
    [17] Georgiev V. Small amplitude solutions of the Maxwell-Dirac equations[J]. Indiana University Mathematics Journal, 1991:845-883.
    [18] Glassey R T,Chadam J M. Properties of the solutions of the Cauchy problem for the(classical)coupled Maxwell-Dirac equations in one space dimension[J]. Proceedings of the American Mathematical Society, 1974, 43(2):373-378.
    [19] Gross L. The cauchy problem for the coupled maxwell and dirac equations[J]. Communications on Pure&Applied Mathematics, 1966, 19(1):1-15.
    [20] Huang Z, Jin S, Markowich P A, et al. A time-splitting spectral scheme for the Maxwell-Dirac system[J]. Journal of Computational Physics, 2005, 208(2):761-789.
    [21] Katsnelson M I, Katsnel'son M I. Graphene:Carbon in Two Dimensions[M]. Cambridge University Press, 2012.
    [22] Lisi A G. A solitary wave solution of the Maxwell-Dirac equations[J]. Journal of Physics A:Mathematical and General, 1995, 28(18):5385.
    [23] McLachlan R I, Quispel G R W. Splitting methods[J]. Acta Numerica, 2002, 11(11):341-434.
    [24] Oleinik O A, Shamaev A S, Yosifian G A. Mathematical Problems in Elasticity and Homogenization[M]. North-Holland, Amsterdam, 1992.
    [25] Qi X L, Zhang S C. Topological insulators and superconductors[J]. Reviews of Modern Physics,2011, 83(4):1057.
    [26] Raza H. Graphene Nanoelectronics:Metrology, Synthesis, Properties and Applications[M].Springer Science&Business Media, 2012.
    [27] Roche S, Valenzuela S O. Topological Insulators:Fundamentals and Perspectives[M]. John Wiley&Sons, 2015.
    [28] Shen S Q. Topological Insulators[M]. New York:Springer,2012.
    [29] Shen S Q, Shan W Y, Lu H Z. Topological Insulator and the Dirac Equation[C]. Spin. World Scientific Publishing Company, 2011, 1(01):33-44.
    [30] Sparber C, Markowich P. Semiclassical asymptotics for the Maxwell-Dirac system[J]. Journal of Mathematical Physics, 2003, 44(10):4555-4572.
    [31] Strang G. On the construction and comparison of difference schemes[J]. SIAM Journal on Numerical Analysis, 1968, 5(3):506-517.
    [32] Thaller B. The Dirac Equation[M]. Springer Science&Business Media, 2013.
    [33] Wakano M. Intensely localized solutions of the classical Dirac-Maxwell field equations[J]. Progress of Theoretical Physics, 1966, 35(6):1117-1141.
    [34] Zhang Y, Cao L Q, Wong Y S. Multiscale computations for 3d time-dependent maxwell's equations in composite materials[J]. SIAM Journal on Scientific Computing, 2010, 32(5):2560-2583.
    [35] Zhang L, Cao L Q, and Luo J L. Multiscale analysis and computation for a stationary schr(o|¨)dingerpossion system in heterogeneous nanostructures[J]. Multiscale Modeling&Simulation, 2014, 12(1):

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700