用户名: 密码: 验证码:
大气半/中等挥发性有机物的组成及其对有机气溶胶贡献
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Constituents of Atmospheric Semi-Volatile and Intermediate Volatility Organic Compounds and Their Contribution to Organic Aerosol
  • 作者:唐荣志 ; 王辉 ; 刘莹 ; 郭松
  • 英文作者:Rongzhi Tang;Hui Wang;Ying Liu;Song Guo;State Key Joint Laboratory of Environmental Simulation and Pollution Control,College of Environmental Sciences and Engineering, Peking University;Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology;
  • 关键词:半/中等挥发性有机物 ; 测量技术 ; 一次排放 ; 二次有机气溶胶 ; 大气行为 ; 气粒分配
  • 英文关键词:semi-volatile/intermediate volatility organic compounds(S/IVOCs);;measurement technique;;primary emission;;secondary organic aerosols;;atmospheric behavior;;gas-to-particle partitioning
  • 中文刊名:HXJZ
  • 英文刊名:Progress in Chemistry
  • 机构:环境模拟与污染控制国家联合重点实验室北京大学环境科学与工程学院;江苏省大气环境与装备技术协同创新中心江苏省大气环境监测与污染控制重点实验室南京信息工程大学;
  • 出版日期:2019-02-11 10:43
  • 出版单位:化学进展
  • 年:2019
  • 期:v.31;No.225
  • 基金:国家重点研发计划(No.2016YFC0202000,2017YFC0213000);; 国家自然科学基金项目(No.21677002)资助~~
  • 语种:中文;
  • 页:HXJZ201901032
  • 页数:11
  • CN:01
  • ISSN:11-3383/O6
  • 分类号:192-202
摘要
本文综述了大气半/中等挥发性有机物S/IVOCs的测量技术、来源、大气行为及对有机气溶胶生成的贡献。S/IVOCs测量技术的进步主要依托于质谱技术的发展,分为离线和在线测量质谱测量技术。离线测量物种鉴别能力好,但预处理复杂、时间分辨率低;在线测量技术可以获得高时间分辨率的组分及气粒分配信息,对揭示化学反应机理具有重要作用。S/IVOCs的来源包括一次和二次源。目前对一次源排放的研究主要针对机动车和生物质燃烧。研究结果表明,汽油车、柴油车和生物质燃烧排放S/IVOCs分别为POA的2.9~8.5倍、4.5~20.4倍和0.83~5.57倍。汽油车排放的S/IVOCs氧化可贡献总SOA的34%~76%,柴油车则高达90%,生物质燃烧占80%。基于外场观测数据的模型模拟表明S/IVOCs对实际大气中SOA的贡献可达40%~85%,是不可或缺的SOA前体物。未来研究中,开发新的测量技术、定量分析源排放和环境大气中S/IVOCs浓度及其对SOA贡献是研究的关键,将外场观测、实验室模拟与模型模拟相结合,能够为S/IVOCs生成SOA机制探讨提供思路。
        This review summarizes the recent advances of semi-volatile/intermediate volatility organic compounds studies, including the measurement techniques, S/IVOCs sources, atmospheric behavior and their contributions to organic aerosol formation. The rapid development of mass spectrometry facilitates the S/IVOCs measurements which include on-line and off-line mass spectrometry. The S/IVOCs off-line measurements provide more information about species at molecular level. However, the offline techniques bear the drawbacks of complex pretreatment and low time resolution, which leads to large uncertainties and the limitation to study the atmospheric chemistry processes. The on-line techniques measure the high time resolution molecular composition and gas-to-particle partitioning, and provide more useful information to elucidate the chemical mechanism of the ambient atmosphere. S/IVOCs could be directly emitted into the atmosphere, or formed by the oxidation of volatile organic compounds(VOCs). The major primary S/IVOCs sources are vehicular emission and biomass burning. Previous studies showed that ratios of S/IVOCs to POA are 2.9~8.5 for gasoline engines, 4.5~20.4 for diesel engines, and 0.83~5.57 for biomass burning. The S/IVOCs oxidation could contribute to 34%~76%, 90%, and 80% of the total SOA from the oxidation of gasoline vehicle exhaust, diesel vehicle exhaust, and biomass burning gases, respectively. Model simulation based on field observations showed that the SOA from the S/IVOCs oxidation could account for 40%~85% of the ambient SOA, suggesting that S/IVOCs are unneglectable SOA precursors. In future studies, new techniques are required to be developed to quantify more S/IVOCs species. Concentrations and speciation of S/IVOCs from different sources as well as ambient atmosphere need to be quantified. The combination of field campaign, lab study and model simulation can provide more insights of mechanism of S/IVOCs oxidation to improve our understanding of SOA formation.
引文
[1] Kanakidou M, Seinfeld J H, Pandis S N, Barnes I, Dentener, F J, Facchini M C, Van Dingenen R, Ervens B, Nenes A, Nielsen C J. Atmos. Chem. Phys., 2005, 5: 1053.
    [2] Guo S, Hu M, Zamora M L, Peng J F, Shang D J, Zheng J, Du Z F, Wu Z J, Shao M, Zeng L M, Molina M J, Zhang R Y. P. Natl. Acad. Sci. U. S. A., 2014, 111:17373.
    [3] Hallquist M, Wenger J C, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J, Donahue N M, George C, Goldstein A H, Hamilton J F, Herrmann H, Hoffmann T, Iinuma Y, Jang M, Jenkin M E, Jimenez J L, Kiendler-Scharr A, Maenhaut W, McFiggans G, Mentel T F, Monod A, Prevot A S H, Seinfeld J H, Surratt J D, Szmigielski R, Wildt J. Atmos. Chem. Phys., 2009, 9: 5155.
    [4] Jimenez J L, Canagaratna M R, Donahue N M, Prevot A S. H, Zhang Q, Kroll J H, DeCarlo P F, Allan J D, Coe H, Ng N L, Aiken A C, Docherty K S, Ulbrich I M, Grieshop A P, Robinson, A L,Duplissy J, Smith J D, Wilson K R, Lanz V A; Hueglin C, Sun Y L, Tian J, Laaksonen A, Raatikainen T, Rautiainen J, Vaattovaara P, Ehn M, Kulmala M, Tomlinson J M, Collins D R, Cubison M J, Dunlea E J. Science, 2009, 326: 1525.
    [5] Ayres B R, Allen H M, Draper D C, Brown S S, Wild R J, Jimenez J L, Day D A, Campuzano-Jost P, Hu W, DeGouw J, Koss A, Cohen R C, Duffey K C, Romer P, Baumann K, Edgerton E, Takahama S, Thornton J A, Lee B H, Lopez-Hilfiker F D, Mohr C, Wennberg P O, Nguyen T B, Teng A, Goldstein A H, Olson K, Fry J L. Atmos. Chem. Phys., 2015, 15: 13377.
    [6] Guo S, Hu M, Guo Q F, Zhang X, Zheng M, Zheng J, Chang C C, Schauer J J, Zhang R Y. Environ. Sci. Technol., 2012, 46: 9846.
    [7] Guo S, Hu M, Wang Z B, Slanina J, Zhao Y L. Atmos. Chem. Phys., 2010, 10: 947.
    [8] Kroll J H, Seinfeld J H. Atmos. Environ., 2008, 42: 3593.
    [9] 郭松(Guo S), 胡敏(Hu M), 尚冬杰(Shang D J), 郭庆丰(Guo Q F), 胡伟伟(Hu W W).化学学报(Acta Chimca Sinica), 2014, 72: 145
    [10] 郭松(Guo S),胡敏(Hu M),郭庆丰(Guo Q F),尚冬杰(Shang D J).化学学报(Acta Chimca Sinica), 2014, 72: 658.
    [11] Ma P K, Zhao Y L, Robinson A L, Worton D R, Goldstein A H, Ortega A M, Jimenez J L, Zotter P, Prév?t A S H, Szidat S. Atmos. Chem. Phys., 2017, 17: 9237.
    [12] Volkamer R, Jimenez J L, San M F, Dzepina K, Zhang Q, Salcedo D, Molina L T, Worsnop D R, Molina M J. Geophys. Res. Let., 2006, 33:L17811.
    [13] Heald C L, Coe H, Jimenez J L, Weber R J, Bahreini R, Middlebrook A M, Russell L M, Jolleys M, Fu T MA, Allan J D, Bower K N, Capes G, Crosier J, Morgan W T, Robinson N H, Williams P I, Cubison M J, DeCarlo P F, Dunlea E J. Atmos. Chem. Phys., 2011, 11: 12673.
    [14] Ehn M, Thornton J A, Kleist E, Sipila M, Junninen H, Pullinen I, Springer M, Rubach F, Tillmann R, Lee B, Lopez-Hilfiker F, Andres S, Acir I H, Rissanen M, Jokinen T, Schobesberger S, Kangasluoma J, Kontkanen J, Nieminen T, Kurten T, Nielsen L B, Jorgensen S, Kjaergaard H G, Canagaratna M, Dal M M, Berndt T, Petaja T, Wahner A, Kerminen V M, Kulmala M, Worsnop D R, Wildt J, Mentel T F. Nature, 2014, 506: 476.
    [15] Riccobono F, Schobesberger S, Scott C E, Dommen J, Ortega I K, Rondo L, Almeida J, Amorim A, Bianchi F, Breitenlechner M, David A, Downard A, Dunne E M, Duplissy J, Ehrhart S, Flagan R C, Franchin A, Hansel A, Junninen H, Kajos M, Keskinen H, Kupc A, Kurten A, Kvashin A N, Laaksonen A, Lehtipalo K, Makhmutov V, Mathot S, Nieminen T, Onnela A, Petaja T, Praplan A P, Santos F D, Schallhart S, Seinfeld J H, Sipila M, Spracklen D V, Stozhkov Y, Stratmann F, Tome A, Tsagkogeorgas G, Vaattovaara P, Viisanen Y, Vrtala A, Wagner P E, Weingartner E, Wex H, Wimmer D, Carslaw K S, Curtius J, Donahue N M, Kirkby J, Kulmala M, Worsnop D R, Baltensperger U. Science, 2014, 344: 717.
    [16] Bianchi F, Tr?stl J, Junninen H, Frege C, Henne S, Hoyle C R, Molteni U, Herrmann E, Adamov A, Bukowiecki N. Science, 2016, 352:1109.
    [17] Trostl J, Chuang W K, Gordon H, Heinritzi M, Yan C, Molteni U, Ahlm L, Frege C, Bianchi F, Wagner R, Simon M, Lehtipalo K, Williamson C, Craven J S, Duplissy J, Adamov A, Almeida J, Bernhammer A K, Breitenlechner M, Brilke S, Dias A, Ehrhart S, Flagan R C, Franchin A, Fuchs C, Guida R, Gysel M, Hansel A, Hoyle C R, Jokinen T, Junninen H, Kangasluoma J, Keskinen H, Kim J, Krapf M, Kurten A, Laaksonen A, Lawler M, Leiminger M, Mathot S, Mohler O, Nieminen T, Onnela A, Petaja T, Piel F M, Miettinen P, Rissanen M P, Rondo L, Sarnela N, Schobesberger S, Sengupta K, Sipila M, Smith J N, Steiner G, Tome A, Virtanen A, Wagner A C, Weingartner E, Wimmer D, Winkler P M, Ye P L, Carslaw K S, Curtius J, Dommen J, Kirkby J, Kulmala M, Riipinen I, Worsnop D R. Donahue N M, Baltensperger U. Nature, 2016, 533: 527.
    [18] Kalberer M, Paulsen D, Sax M, Steinbacher M, Dommen J, Prevot A S H, Fisseha R, Weingartner E, Frankevich V, Zenobi R. Science, 2004, 303: 1659.
    [19] Barsanti K C, Pankow J F Atmos. Environ., 2005, 39: 6597.
    [20] Song C, Zaveri R A, Alexander M L, Thornton J A, Madronich S, Ortega J V, Zelenyuk A, Yu X Y, Laskin A, Maughan D A. Geophys. Res. Let., 2007, 34:20.
    [21] Ervens B, Carlton A G, Turpin B J, Altieri K E, Kreidenweis S M, Feingold G. Geophys. Res. Let., 2008, 35:2.
    [22] Ng N L, Kroll J H, Chan A W H, Chhabra P S, Flagan R C, Seinfeld J H. Atmos. Chem. Phys., 2007, 7: 3909.
    [23] Robinson A L, Donahue N M, Shrivastava M K, Weitkamp, E A, Sage A M, Grieshop A P, Lane T E, Pierce J R, Pandis S N. Science, 2007, 315: 1259.
    [24] Donahue N M, Robinson A L, Stanier C O, Pandis S N. Environ. Sci. Technol., 2006, 40: 2635.
    [25] Dzepina K, Volkamer R M, Madronich S, Tulet P, Ulbrich I M, Zhang Q, Cappa C D, Ziemann P J, Jimnez J L. Atmos. Chem. Phys., 2009, 9: 5681.
    [26] Spracklen D V, Jimnez J L, Carslaw K S, Worsnop D R, Evans M J, Zhang Q, Canagaratna M R, Allan J, Coe H, McFiggans G, Rap A, Forster P. Atmos. Chem. Phys., 2011, 11: 12109.
    [27] Bergstr?m R, Denier van der Gon H A C, Prév?t A S H, Yttri K E, Simpson D. Atmos. Chem. Phys., 2012, 12: 8499.
    [28] Hayes P L, Carlton A G, Baker K R, Ahmadov R, Washenfelder R A, Alvarez S, Rappenglück B, Gilman J B, Kuster W C, de Gouw J A, Zotter P, Prév?t A S H, Szidat S, Kleindienst T E, Offenberg J H, Ma P K, Jimnez J L. Atmos. Chem. Phys., 2015, 15: 5773.
    [29] Woody M C, West J J, Jather S H, Robinson A L, Arunachalam S. Atmos. Chem. Phys., 2015, 15: 6929.
    [30] Bruns E A, Haddad I E, Slowik J G, Kilic D, Klein F, Baltensperger U, Prév?t A S H. Sci. Rep., 2016, 6: 27881.
    [31] Jathar S H, Woody M, Pye H O T, Baker K R, Robinson A L. Atmos. Chem. Phys., 2017, 17: 4305.
    [32] Hunter J F, Day D A, Palm B B, Yatavelli R L N, Chan A W H, Kaser L,Cappellin L, Hayes P L, Cross E S, Carrasquillo A J. Emergence, 2017, 8: 21.
    [33] Król S, Zabiega?a B, Namie■nik. J. Anal. Bioanal. Chem., 2011, 400: 751.
    [34] Cheng Y, He K B, Duan F K, Zheng M, Ma Y L, Tan J H. Environ Int., 2009, 35: 674.
    [35] Cui Y, Wang J, Li D H. Anal. Chim. Acta., 2013, 799: 8.
    [36] Melymuk L, Bohlin P, Sanka O, Pozo K, Klanova. J. Environ. Sci. Technol., 2014, 48: 14077.
    [37] Cross E S, Hunter J F, Carrasquillo A J, Franklin J P, Herndon S C, Jayne J T, Worsnop D R, Miake-Lye R C, Kroll J H. Atmos. Chem. Phys., 2013, 13: 7845.
    [38] Canagaratna M R, Jayne J T, Jimenez J L, Allan J D, Alfarra M R, Zhang Q, Onasch T B, Drewnick F, Coe H, Middlebrook A. Mass. Spectrom. Rev., 2007, 26: 185.
    [39] Huffman J A, Ziemann P J, Jaynek J T, Worsnop D R, Jimenez J L. Aerosol. Sci. Tech., 2008, 42: 395.
    [40] Holzinger R, Williams J, Herrmann F, Lelieveld J, Donahue N M, R?ckmann T. Atmos. Chem. Phys., 2010, 10: 2257.
    [41] Eichler P, Müller M, D’Anna B, Wisthaler A. Atmos. Meas. Tech., 2015, 8: 1353.
    [42] Yatavelli R L N, Thornton J A. Aerosol. Sci. Tech., 2010, 44:61.
    [43] Lopez-Hilfiker F D, Mohr C, Ehn M, Rubach F, Kleist E, Wildt J, Mentel T F, Lutz A, Hallquist M, Worsnop D, Thornton J A. Atmos. Meas. Tech., 2014, 7: 983.
    [44] Zhao Y L, Kreisberg N M, Worton D R, Teng A P, Hering S V, Goldstein A H. Aerosol. Sci. Technol., 2013, 47: 258.
    [45] Williams B J, Goldstein A H, Kreisberg N M, Hering S V. P. Natl. Acad. Sci. USA., 2009, 107: 15.
    [46] Pye H O T, Seinfeld J H. Atmos. Chem. Phys., 2010, 10: 4377.
    [47] Shrivastava M, Easter R C, Liu X H, Zelenyuk A, Singh B, Zhang K, Ma P L, Chand D, Ghan S, Jimenez J L. J. Geophys. Res., 2015, 120: 4169.
    [48] Hodzic A, Kasibhatla P S, Jo D S, Cappa C D, Jimenez J L.; Madronich, S.; Park, R. J. Atmos. Chem. Phys. 2016, 16, 7917.
    [49] Gordon, T. D.; Presto, A. A.; Nguyen, N. T.; Robertson, W. H, Na K, Sahay K N, Zhang M, Maddox C, Rieger P, Chattopadhyay S, Maldonado H, Maricq M M, Robinson A L. Atmos. Chem. Phys., 2014, 14: 4643.
    [50] May A A, Nguyen N T, Presto A A, Gordon T D, Lipsky E M, Karve M, Gutierrez, A, Robertson W H, Zhang M, Brandow C, Chang O, Chen S Y, Cicero-Fernandez P, Dinkins L, Fuentes M, Huang S M, Ling R, Long J, Maddox C, Massetti J, McCauley E, Miguel A, Na K, Ong R, Pang Y B, Rieger P, Sax T, Truong T, Vo T, Chattopadhyay S, Maldonado H, Maricq M M, Robinson A L. Atmos. Environ., 2014, 88: 247.
    [51] Gentner D R, Worton D R, Isaacman G, Davis L C, Dallmann T R, Wood E C, Herndon S C, Goldstein A H, Harley R A. Environ. Sci. Technol., 2013, 47: 11837.
    [52] Zhao Y L, Hennigan C J, May A A, Tkacik D S, De Gouw J A, Gilman J B, Kuster W C, Borbon A, Robinson A L. Environ. Sci. Technol., 2014, 48: 13743.
    [53] Zhao Y L, Nguyen N T, Presto A A, Hennigan Christopher J, May A A, Robinson A L, Environ. Sci. Technol., 2015, 49: 11516.
    [54] Zhao Y L, Nguyen N T, Presto A A, Hennigan Christopher J, May A A, Robinson A L. Environ. Sci. Technol., 2016, 50: 4554.
    [55] Zhao Y L, Saleh R, Saliba G, Presto A A, Gordon T D, Drozd G T, Goldstein A H, Donahue N M, Robinson A L. Proc. Natl. Acad. Sci. USA., 2017, 114: 6984.
    [56] Schauer J J, Kleeman M J, Cass G R, Simoneit B R T. Environ. Sci. Technol., 2002, 36: 1169.
    [57] Zhao B, Wang S X, Donahue N M, Jathar S H, Huang X F, Wu W J, Hao J M, Robinson A L. Sci Rep., 2016, 6.
    [58] Gaines L, Vyas A, Anderson J. Transportation Research Record: Journal of the Transportation Research Board, 2006, 1983:91.
    [59] Bond T C, Streets D G, Yarber K F, Nelson S M, Woo J H, Klimont Z J. Geophys. Res., 2004, 109.
    [60] Stockwell C E, Veres P R, Williams J, Yokelson R J. Atmos. Chem. Phys., 2015, 15: 845.
    [61] Yokelson R J, Burling I R, Gilman J B, Warneke C, Stockwell C E, De Gouw J, Akagi S K, Urbanski S P, Veres P, Roberts J M, Kuster W C, Reardon J, Griffith D W T, Johnson T J, Hosseini S, Miller J W, Cocker D R, Jung H, Weise D R. Atmos. Chem. Phys., 2013, 13: 89.
    [62] Hatch L E, Yokelson R J, Stockwell C E, Veres P R, Simpson I J, Blake D R, Orlando J J, Barsanti K C. Atmos. Chem. Phys., 2017, 17: 1471.
    [63] Pankow James F. Atmos. Environ., 1994, 28: 185.
    [64] Grieshop A P, Logue J M, Donahue N M, Robinson A L. Atmos. Chem. Phys., 2009, 9: 1263.
    [65] Shrivastava M K, Lane T E, Donahue N M, Pandis S N, Robinson A L. J. Geophys. Res., 2008, 113.
    [66] Hodzic A, Jimenez J L, Madronich S, Canagaratna M R, DeCarlo P F, Kleinman L, Fast J. Atmos. Chem. Phys., 2010, 10: 5491.
    [67] Kim S, Wolfe G M, Mauldin L, Cantrell C, Guenther A, Karl T, Turnipseed A, Greenberg J, Hall S R, Ullmann K. Atmos. Chem. Phys., 2013, 13: 2031.
    [68] Nakashima Y, Kato S, Greenberg J, Harley P, Karl T, Turnipseed A, Apel E, Guenther A, Mith J, Kajii Y. Atmos. Environ., 2014, 85:1.
    [69] Jathar S H, Gordon T D, Hennigan C J, Pye H O T, Pouliot G, Adams P J, Donahue N M, Robinson A L. Proc. Natl. Acad. Sci. USA., 2014, 111: 10473.
    [70] Gentner D R, Jathar S H, Gordon T D, Bahreini R, Day D A, El Haddad I, Hayes P L, Pieber S M, Platt S M, De Gouw J, Goldstein A H, Harley R A, Jimenez J L, Prevot A S H, Robinson A L. Environ. Sci. Technol., 2017, 51: 1074.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700