用户名: 密码: 验证码:
近零磁场下干扰磁响应关键基因对褐飞虱寿命的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of the Interference of Key Magnetic Response Genes on the Longevity of Brown Planthopper (Nilaparvata lugens) Under Near-Zero Magnetic Field
  • 作者:贺静澜 ; 张明 ; 刘瑞莹 ; 万贵钧 ; 潘卫东 ; 陈法军
  • 英文作者:HE JingLan;ZHANG Ming;LIU RuiYing;WAN GuiJun;PAN WeiDong;CHEN FaJun;College of Plant Protection, Nanjing Agricultural University;Beijing Key Laboratory of Bioelectromagetics,Institute of Electrical Engineering, Chinese Academy of Sciences;
  • 关键词:磁场强度变化 ; 褐飞虱 ; 磁响应基因 ; RNA干扰 ; 成虫寿命 ; 磁生物学效应
  • 英文关键词:magnetic field changes;;brown planthopper (Nilaparvata lugens);;magnetic response gene;;RNA interference (RNAi);;adult longevity;;magnetic bio-effect
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:南京农业大学植物保护学院;中国科学院电工研究所生物电磁学北京市重点实验室;
  • 出版日期:2019-01-01
  • 出版单位:中国农业科学
  • 年:2019
  • 期:v.52
  • 基金:国家自然科学基金(31670855);国家自然科学基金青年科学基金(31701787);; 江苏省自然科学基金青年基金(BK20160717);; 中央高校基本科研业务费青年科技创新基金(KJQN201820)
  • 语种:中文;
  • 页:ZNYK201901005
  • 页数:11
  • CN:01
  • ISSN:11-1328/S
  • 分类号:50-60
摘要
【目的】隐花色素(cryptochrome, Cry)和铁硫簇蛋白IscA(iron-sulfur cluster assembly,即MagR)是生物体内潜在的磁受体蛋白,本研究通过RNA干扰(RNAi)技术,分别敲减褐飞虱(Nilaparvata lugens)体内的磁响应关键基因NlCry1、NlCry2和NlMagR,旨在探明近零磁场(near-zero magnetic field,NZMF)环境下,以上3种基因在褐飞虱寿命调节过程中的作用,从而间接探讨这3种基因对磁场的响应情况。【方法】采用RNAi技术,以实验室正常磁场环境下稳定饲养的短翅初羽化褐飞虱雌雄成虫为材料,通过向其体内注射双链RNA(dsRNA)分别抑制磁响应关键基因NlCry1、NlCry2和NlMagR,随后立即分别放入正常磁场(geomagnetic field,GMF)和近零磁场中,于每日相同时间观察记录试虫寿命。同时于注射后的1、2和3 d通过RNAiso Plus法提取GMF中褐飞虱雌成虫总RNA,反转录合成第一链DNA,后采用实时荧光定量PCR(RT-qPCR)技术检测该基因的表达情况,以确定基因干扰效率。【结果】注射ds NlCry1后,褐飞虱雌雄成虫寿命在近零磁场和正常磁场间均无显著差异。注射ds NlCry2后,近零磁场中褐飞虱雌雄成虫寿命比正常磁场分别显著延长27.78%和50.04%;此外,与注射ds GFP处理相比,正常磁场下注射ds NlCry2的雌成虫寿命缩短,而近零磁场下注射ds NlCry2的雌成虫寿命延长,但二者差异均不显著;近零磁场和正常磁场下注射ds NlCry2的雄成虫寿命均缩短(25.41%和10.73%),且正常磁场下差异显著。近零磁场中,注射ds NlMagR的雌成虫寿命较注射ds GFP的寿命显著缩短了16.48%,而雄成虫寿命在磁场间、干扰处理间的差异均不显著。【结论】磁场变化下褐飞虱雌雄成虫体内3种磁响应关键基因对其寿命的调节功能存在差异。其中,NlCry2对磁场变化存在敏感响应,表现为敲减该基因与磁场变化的互作显著地影响雌雄成虫寿命,且表现出"性二型性";NlMagR也可对磁场变化产生明显响应,但该响应只存在于雌成虫;此外,NlCry1对磁场变化无响应,该基因或与褐飞虱雌雄成虫寿命调节无关。
        【Objective】Cryptochrome(Cry) and iron-sulfur cluster protein IscA(iron-sulfur cluster assembly, MagR) are potential magnetic receptor proteins in organisms. In this study, key magnetic response genes of the brown planthopper(Nilaparvata lugens) were knocked-down by RNA interference(RNAi), including NlCry1, Nl Cry2 and Nl Mag R. The objective of this study is to investigate the role of these three magnetic response genes in the longevity mediation of N. lugens in near-zero magnetic field(NZMF). Thus, the response of these three genes to magnetic field could be studied indirectly.【Method】Newly emerged brachypterous female and male adults of N. lugens fed in the lab magnetic field were chosen as the experimental material, and RNAi technology was used to inhibit the key magnetic response genes'(NlCry1, Nl Cry2 and NlMagR) expression by injection of double stranded RNA, respectively. Then the RNAi treated adults were immediately transformed into the geomagnetic field(GMF) and NZMF respectively to observe their longevity. The total RNA of the RNAi treated adults under GMF was extracted by using the RNAiso Plus method on the 1 st, 2 nd and 3 rd day after the microinjection, respectively. And then the gene expressions of NlCry1, NlCry2 and Nl Mag R were measured by using the RT-qPCR(real-time quantitative polymerase chain reaction) after the reverse transcription synthesis of first strand DNA in order to test the efficiency of RNAi. 【Result】There was no significant difference in the longevity of female and male adults after the injection of ds NlCry1 between the treatments of NZMF and GMF, while after the injection of ds Nl Cry2, the longevity of female(27.78%) and male(50.04%) adults under NZMF was significantly longer than that of the individuals under GMF, respectively. Moreover, the longevity of female adults injected with ds NlCry2 was shorter under GMF while longer under NZMF than that of individuals injected with ds GFP, even if the difference was not significant. The longevity of male adults injected with ds NlCry2 was shorter than that of individuals injected with ds GFP under NZMF(25.41%) and GMF(10.73%), respectively, and the difference under GMF reached the significant level. Furthermore, the longevity of female adults injected with ds NlMagR was significantly shorter(16.48%) than that of individuals injected with ds GFP under the NZMF. 【Conclusion】There is a difference in the regulation of the key genes of magnetic susceptibility(NlCry1, NlCry2 and NlMagR) on the female and male longevity for N. lugens under the change of magnetific field. Hereinto, the NlCry2 susceptibly responses to the changes of magnetic fields, which shows that the gene knock-down and its interaction with magnetic field changes can significantly influence the longevity of female and male adults, and characterized as "sexual dimorphism". Similarly, the NlMagR(Isc A) also sensitively responds to magnetic field changes, but just for the female adults of N. lugens under the NZMF in contrast to the GMF. However, there is no response of NlCry1 to magnetic field changes, and this gene may not be involved in the regulation of female and male longevity for N. lugens.
引文
[1]朱晓璐,王江云.地磁场与生物的磁感应现象.自然杂志,2013,35(3):200-206.ZHU X L,WANG J Y.The effect of geomagnetism on biomagnetism.Chinese Journal of Nature,2013,35(3):200-206.(in Chinese)
    [2]DINI L,ABBRO L.Bioeffects of moderate-intensity static magnetic fields on cell cultures.Micron,2005,36(3):195-217.
    [3]莫炜川,刘缨,赫荣乔.亚磁场及其生物响应机制.生物化学与生物物理进展,2012,39(9):835-842.MO W C,LIU Y,HE R Q.A biological perspective of the hypomagnetic field:from definition towards mechanism.Progress in Biochemistry and Biophysics,2012,39(9):835-842.(in Chinese)
    [4]贺静澜,万贵钧,张明,潘卫东,陈法军.生物地磁响应研究进展.生物化学与生物物理进展,2018,45(7):689-704.HE J L,WAN G J,ZHANG M,PAN W D,CHEN F J.Progress in the study of giomagnetic responses of organisms.Progress in Biochemistry and Biophysics,2018,45(7):689-704.(in Chinese)
    [5]LOHMANN K J,LOHMANN C M,PUTMAN N F.Magnetic maps in animals:nature’s GPS.The Journal of Experimental Biology,2007,210(21):3697-3705.
    [6]SCHENCK J F.Safety of strong,static magnetic fields.Journal of Magnetic Resonance Imaging,2000,12(1):2-19.
    [7]ROSEN A D.Mechanism of action of moderate-intensity static magnetic fields on biological systems.Cell Biochemistry and Biophysics,2003,39(2):163-173.
    [8]王学斌,徐慕玲,李兵,李东风,蒋锦昌.亚磁空间中孵化的一日龄小鸡味觉回避长时记忆受损.科学通报,2003,48(19):2042-2045.WANG X B,XU M L,LI B,LI D F,JIANG J C.Long-term memory was impaired in one-trial passive avoidance task of day-old chicks hatching from hypomagnetic field space.Chinese Science Bulletin,2003,48(19):2042-2045.(in Chinese)
    [9]ZHANG B,LU H,WANG X,ZHOU X J,XU S Y,ZHANG K,JIANG J C,LI Y,GUO A K.Exposure to hypomagnetic field space for multiple generations causes amnesia in Drosophila melanogaster.Neuroscience Letters,2004,371(2/3):190-195.
    [10]PRATO F S,ROBERTSON J A,DESJARDINS D,HENSEL J,THOMAS A W.Daily repeated magnetic field shielding induces analgesia in CD-1 mice.Bioelectromagnetics,2005,26(2):109-117.
    [11]MO W C,FU J P,DING H M,LIU Y,HUA Q,HE R Q.Hypomagnetic field alters circadian rhythm and increases algesia in adult male mice.Progress in Biochemistry and Biophysics,2015,42(7):639-646.
    [12]BLISS V L,HEPPNER F H.Circadian activity rhythm influenced by near zero magnetic field.Nature,1976,261(5559):411-412.
    [13]FESENKO E E,MEZHEVIKINA L M,OSIPENKO M A,GORDONR Y,KHUTZIAN S S.Effect of the“zero”magnetic field on early embryogenesis in mice.Electromagnetic Biology and Medicine,2010,29(1/2):1-8.
    [14]MO W C,LIU Y,COOPER H M,HE R Q.Altered development of Xenopus embryos in a hypogeomagnetic field.Bioelectromagnetics,2012,33(3):238-246.
    [15]BINHI V N,SARIMOV R M.Zero magnetic field effect observed in human cognitive processes.Electromagnetic Biology and Medicine,2009,28(3):310-315.
    [16]BINHI V N,SARIMOV R M.Effect of the hypomagnetic field on the size of the eye pupil.Biological Physics,2013,arXiv:1302.2741.
    [17]GURFINKEL Y I,VASIN A L,MATVEEVA T A,SASONKO M L.Evaluation of the hypomagnetic environment effects on capillary blood circulation,blood pressure and heart rate.Human Physiology,2016,42(7):809-814.
    [18]SHAW J,BOYD A,HOUSE M,WOODWARD R,MATHES F,COWIN G,SAUNDERS M,BAER B.Magnetic particle-mediated magnetoreception.Journal of the Royal Society Interface,2015,12(110):0499.
    [19]RITZ T,ADEM S,SCHULTEN K.A model for photoreceptor-based magnetoreception in birds.Biophysical Journal,2000,78(2):707-718.
    [20]WILTSCHKO R,WILTSCHKO W.Magnetic Orientation in Animals.Berlin Heidelberg:Springer-Verlag,1995:33-41.
    [21]QIN S Y,YIN H,YANG C L,DOU Y F,LIU Z M,ZHANG P,YU H,HUANG Y L,FENG J,HAO J F,HAO J,DENG L Z,YAN X Y,DONG X L,ZHAO Z X,JIANG T J,WANG H W,LUO S J,XIE C.A magnetic protein biocompass.Nature Materials,2016,15(2):217-226.
    [22]LONG X,YE J,ZHAO D,ZHANG S J.Magnetogenetics:remote non-invasive magnetic activation of neuronal activity with a magnetoreceptor.Science Bulletin,2015,60(24):2107-2119.
    [23]ZHANG X,LI J F,WU Q J,LI B,JIANG J C.Effects of hypomagnetic field on noradrenergic activities in the brainstem of golden hamster.Bioelectromagnetics,2007,28(2):155-158.
    [24]CHAPMAN J W,DRAKE V A,REYNOLDS D R.Recent insights from radar studies of insect flight.Annual Review of Entomology,2011,56:337-356.
    [25]PAN W D,WAN G J,XU J J,LI X M,LIU Y X,QI L P,CHEN F J.Evidence for the presence of biogenic magnetic particles in the nocturnal migratory brown planthopper,Nilaparvata lugens.Scientific Reports,2016,6:18771.
    [26]WAN G J,JIANG S L,ZHAO Z C,XU J J,TAO X R,SWORD G A,GAO Y B,PAN W D,CHEN F J.Bio-effects of near-zero magnetic fields on the growth,development and reproduction of small brown planthopper,Laodelphax striatellus and brown planthopper,Nilaparvata lugens.Journal of Insect Physiology,2014,68:7-15.
    [27]WAN G J,YUAN R,WANG W J,FU KY,ZHAO J Y,JIANG S L,PAN W D,SWORD G A,CHEN F J.Reduced geomagnetic field may affect positive phototaxis and flight capacity of a migratory rice planthopper.Animal Behaviour,2016,121:107-116.
    [28]XU J J,ZHANG Y C,WU J Q,WANG W H,LI Y,WAN G J,CHENF J,SWORD G A,PAN W D.Molecular characterization,spatial-temporal expression and magnetic response patterns of the iron-sulfur cluster assembly1(IscA1)in the rice planthopper,Nilaparvata lugens.Insect Science,2017,DOI 10.1111/1744-7917.12546.
    [29]XU J J,WAN G J,HU D B,HE J,CHEN F J,WANG X H,HUA H X,PAN W D.Molecular characterization,tissue and developmental expression profiles of cryptochrome genes in wing dimorphic brown planthoppers,Nilaparvata lugens.Insect Science,2016,23(6):805-818.
    [30]GEGEAR R J,CASSELMAN A,WADDELL S,REPPERT S M.CRYPTOCHROME mediates light-dependent magnetosensitivity in Drosophila.Nature,2008,454(7207):1014-1018.
    [31]YOSHII T,AHMAD M,HELFRICH-F?RSTER C.Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock.PLoS Biology,2009,7(4):e1000086.
    [32]FEDELE G,GREEN E W,ROSATO E,KYRIACOU C P.An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway.Nature Communications,2014,5:4391.
    [33]WAN G J,WANG W J,XU J J,YANG Q F,DAI M J,ZHANG F J,SWORD G A,PAN W D,CHEN F J.Cryptochromes and hormone signal transduction under near-zero magnetic fields:New clues to magnetic field effects in a rice planthopper.PLoS ONE,2015,10(7):e0132966.
    [34]ZHU H,YUAN Q,FROY O,CASSELMAN A,REPPERT S M.The two CRYs of the butterfly.Current Biology,2005,15(23):R953-R954.
    [35]HENRICH V C,RYBCZYNSKI R,GILBERT L I.Peptide hormones,steroid hormones,and puffs:mechanisms and models in insect development.Vitamins and Hormones,1998,55:73-125.
    [36]STAY B.A review of the role of neurosecretion in the control of juvenile hormone synthesis:A tribute to Berta Scharrer.Insect Biochemistry and Molecular Biology,2000,30(8/9):653-662.
    [37]YAMANAKA N,REWITZ K F,O’CONNOR M B.Ecdysone control of developmental transitions:Lessons from Drosophila research.Annual Review of Entomology,2013,58:497-516.
    [38]DUBROVSKY E B.Hormonal cross talk in insect development.TRENDS in Endocrinology and Metabolism,2005,16(1):6-11.
    [39]SANDRELLI F,COSTA R,KYRIACOU C P,ROSATO E.Comparative analysis of circadian clock genes in insects.Insect Molecular Biology,2008,17(5):447-463.
    [40]YAMANAKA N,ROMERO N M,MARTIN F A,REWITZ K F,SUNM,O’CONNOR M B,LéOPOLD P.Neuroendocrine control of Drosophila larval light preference.Science,2013,341(6150):1113-1116.
    [41]JENSEN L T,CULOTTA V C.Role of Saccharomyces cerevisiae ISA1 and ISA2 in iron homeostasis.Molecular and Cellular Biology,2000,20(11):3918-3927.
    [42]KAUT A,LANGE H,DIEKERT K,KISPAL G,LILL R.Isa1p is a component of the mitochondrial machinery for maturation of cellular iron-sulfur proteins and requires conserved cysteine residues for function.The Journal of Biological Chemistry,2000,275(21):15955-15961.
    [43]PELZER W,MUHLENHOFF U,DIEKERT K,SIEGMUND K,KISPAL G,LILL R.Mitochondrial Isa2p plays a crucial role in the maturation of cellular iron-sulfur proteins.FEBS Letters,2000,476(3):134-139.
    [44]NILSSON R,SCHULTZ I J,PIERCE E L,SOLTIS K A,NARANUNTARAT A,WARD D M,BAUGHMAN J M,PARADKAR P N,KINGSLEY P D,CULOTTA V C,KAPLAN J,PALIS J,PAW B H,MOOTHA V K.Discovery of genes essential for Heme biosynthesis through large-scale gene expression analysis.Cell Metabolism,2009,10(2):119-130.
    [45]AL-HASSNAN Z N,AL-DOSARY M,ALFADHEL M,FAQEIH E A,ALSAGOB M,KENANA R,ALMASS R,AL-HARAZI O S,AL-HINDI H,MALIBARI O I,ALMUTARI F B,TULBAH S,ALHADEQ F,AL-SHEDDI T,ALAMRO R,AL-ASMARI A,ALMUNTASHRI M,ALSHAALAN H,AL-MOHANNA F A,COLAK D,KAYA N.ISCA2 mutation causes infantile neurodegenerative mitochondrial disorder.Journal of Medical Genetics,2015,52(3):186-194.
    [46]GELLING C,DAWES I W,RICHHARDT N,LILL R,MüHLENHOFF U.Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes.Molecular and Cellular Biology,2008,28(5):1851-1861.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700