用户名: 密码: 验证码:
CaSO_4-C-H_2O体系研究:模拟实验与热力学探讨
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of CaSO_4-C-H_2O System: Simulation Experiments and Thermodynamic Assessment
  • 作者:丁康乐 ; 罗跃 ; 单敬福 ; 关富佳 ; 王莎莎
  • 英文作者:DING Kangle1,2), LUO Yue1), SHAN Jingfu3), GUAN Fujia4), WANG Shasha5) 1) School of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei, 434023; 2) Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences, Wuhan, 430074; 3) Key Laboratory of Exploration Technologies for Oil and Gas Resources of Ministry of Education, Yangtze University, Jingzhou, Hubei, 434023; 4) Key Laboratory for Drilling and Production Engineering of Hubei Province, Jingzhou, Hubei, 434023; 5) Science and Technology Department, Yangtze University, Jingzhou, Hubei, 434023
  • 关键词:TSR ; 固态沥青 ; 活性炭 ; CaSO_4 ; 热力学特征 ; 过程模拟
  • 英文关键词:TSR; solid bitumens; activated carbon; CaSO4; thermodynamic characteristics; process simulation
  • 中文刊名:DZXE
  • 英文刊名:Acta Geologica Sinica
  • 机构:长江大学化学与环境工程学院;中国地质大学(武汉)构造与油气资源教育部重点实验室;长江大学油气资源与勘探技术教育部重点实验室;湖北省油气钻采重点实验室;长江大学科学技术处;
  • 出版日期:2013-03-15
  • 出版单位:地质学报
  • 年:2013
  • 期:v.87
  • 基金:国家自然科学基金项目(编号40902034);; 中国石油科技创新基金项目(编号2012D-5006-0104);; 中国地质大学构造与油气资源教育部重点实验室开放基金研究项目(编号TPR-2011-29);; 湖北省教育厅中青年人才项目(编号Q20121206,Q20101312)联合资助成果
  • 语种:中文;
  • 页:DZXE201303013
  • 页数:9
  • CN:03
  • ISSN:11-1951/P
  • 分类号:132-140
摘要
传统认为TSR成因的固态沥青(焦沥青)属于热化学反应的终端产物,不会对TSR的反应进程起到重要作用。本文以活性炭作为固态沥青(焦沥青)的模型化合物,开展了CaSO_4-C-H_2O体系的热模拟实验研究,探讨了CaSO_4-C-H_2O体系发生TSR的热力学特征。实验结果表明,CaSO_4-C-H_2O体系在300℃时即可启动TSR,主要生成CaCO_3、H_2S和CO_2等产物。这一TSR门限温度要远低于以往室内利用气态或液态烃类进行的TSR模拟实验温度范围,与热力学计算结果一致。利用HSC Chemistry5.0软件进行TSR过程模拟,发现25~200℃时CaSO4-C-H_2O体系发生的TSR完全受动力学控制,在温度保持不变情况下,压力增大不利于CaSO_4-C-H_2O体系发生TSR。较少的含水量对TSR有一定促进作用,而含水量过多则可能抑制TSR的进行,含水量对TSR的影响可能与CaSO4在水中的饱和浓度有关。在一定的温度下,当体系pH≤2时,随着pH逐渐降低,CaSO4的量呈线性递减,但在沉积盆地地层水pH范围内(pH>4),pH对TSR的作用可以忽略不计。CaSO_4-C-H_2O体系发生的TSR反应是一个放热过程,并且随着温度升高,反应热逐渐增大。在25~200℃范围内,TSR反应热为12.9~133J/molCaSO4。热力学计算以及模拟实验结果均暗示,固态沥青(焦沥青)可能比烃类更容易参与TSR。
        It has been traditionally believed that the TSR solid bitumens (pyrobitumen) are the direct product of thermochemical process and has less effect over the process of thermochemical sulfate reduction (TSR) compared with hydrogen sulfide (H2S). In this study, thermochemical simulation experiment of the CaSO4-C-H2O system was conducted to investigate thermodynamic characteristics of STR in the CaSO4-C-H2O system using activated carbon (C) as a model compound of solid bitumen. The results show that CaSO4-C-H2O system initiated TSR process at the temperature of 300℃, generating products like CaCO3, H2S and CO2. The threshold temperature (300℃) is much lower than temperature range of the TSR simulation tests using hydrocarbons in both gaseous and aqueous states, and consistent with the result through thermodynamic calculations. Process simulation of TSR was conducted using the software of HSC Chemistry 5.0. It was found that TSR in the CaSO4-C-H2O system initiated at reservoir temperatures of 25~200℃ was completely controlled by kinetic factors and increasing pressure is unfavorable to initiation of TSR under a constant temperature. The intensity of TSR is likely associated with saturation concentration of CaSO4 in water: a small amount of water may contribute to better oxidizing conditions while excessive water likely restrains the process of TSR. Under the conditions of pH≤2 and certain temperature, amount of sulfate decreased with decreasing pH. However, for pH range (pH>4) formation water in sedimentary basins, effect of pH on TSR can be negligible. TSR in the system of CaSO_4CH_2O is an exothermic process, and the reaction heat increases with the increasing temperatures. It was established that reaction heat of TSR is about 12.9 ~133 J/mol CaSO4 at 25~200℃. Thermodynamic studies and experimental results imply that solid bitumens (pyrobitumen) are much easily involved in TSR than gaseous or aqueous hydrocarbons.
引文
蔡春芳,博梅文,马亭,陈传平,李伟,柳常青.1997.塔里木盆地流体-岩石相互作用研究.北京:地质出版社,1~155.
    蔡春芳,李宏涛.2005.沉积盆地热化学硫酸盐还原作用评述.地球科学进展,20(10):1100~1105.
    蔡立国,饶丹,潘文蕾.2005.川东北地区普光气田成藏模式研究.石油实验地质,27(5):462~466.
    曹养
    曹养同,刘成林,陈永志,焦鹏程,宣之强.2010.库车前陆盆地古近系—新近系铜矿化特征及铜的来源、富集分布初探.地质学报,84(12):1791~1804
    蔡勋育,朱扬明,黄仁春.2006.普光气田沥青地球化学特征及成因.石油与天然气地质,27(3):340~347.
    迪安.1991.兰氏化学手册.北京:科学出版社,1~1584.
    邓景发,范康年.1993.物理化学.北京:高等教育出版社,1~828.
    付小东,秦建中,腾格尔,王小芳.2009.固体沥青—反演油气成藏及改造过程的重要标志.天然气地球科学,20(2):167~173.
    胡安平,Li Maowen,杨春,戴金星,马永生,郭彤楼.2010.川东北高含硫化氢气藏中储层沥青的特征.石油学报,31(2):231~236.
    李厚民,张长青.2012.四川盆地富硫天然气与盆地周缘铅锌铜矿的成因联系.地质论评,58(3):495~510.
    刘全有,金之钧,王毅,杨春,高波,张殿伟.2009.四川盆地海相层系天然气成因类型与TSR改造沥青证据.天然气地球科学,20(5):759~762.
    闻辂,梁婉雪,章正刚,黄进初.1989.矿物红外光谱学.重庆:重庆大学出版社,55~65.
    谢增业,魏国齐,李剑,杨威,张林.2004.川东北飞仙关组鲕滩储层沥青与天然气成藏过程.天然气工业,24(12):17~19.
    徐立恒.2010.普光气藏长兴组—飞仙关组沥青定量化及在资源评价中的应用.成都理工大学学报(自然科学版),37(6):646~649.
    张本仁,傅家谟.2005.地球化学进展,北京:化学工业出版社,376~448.
    周家喜,黄智龙,周国富,金中国,李晓彪,丁伟,谷静.2012.黔西北赫章天桥铅锌矿床成矿物质来源:S、Pb同位素和REE制约.地质论评,56(4):513~524.
    Alonso-Azcarate J,Bottrell S H,Tritlla J.2001.Sulfur redoxreactions and formation of native sulfur veins during low grademetamorphism of gypsum evaporites,Cameros Basin(NESpain).Chemical Geology,174:389~402.
    Amrani A,Zhang Tongwei,Ma Qisheng,Ellis G S,TangYongchun.2008.The role of labile sulfur compounds inthermochemical sulfate reduction.Geochimica et CosmochimicaActa,72:2960~2972.
    Cai Chunfang,Worden R H,Bottrell S H,Wang Lansheng,YangChanchun.2003.Thermochemical sulphate reduction and thegeneration of hydrogen sulphide and thiols(mercaptans)inTriassic carbonate reservoirs from the Sichuan Basin,China.Chemical Geology,202:39~57.
    Cai Chunfang,Xie Zengye,Worden R H,Hu Guoyi,WangLansheng,He Hong.2004.Methane-dominatedthermochemical sulphate reduction in the Triassic FeixianguanFormation East Sichuan Basin,China:towards prediction offatal H2S concentrations.Marine and Petroleum Geology,21:1265~1279.
    Cai Chunfang,Li Kaikai,Zhu Yangming,Xiang Lei,Jiang Lei,Tenger,Cai Xunyu,Cai Liulu.2010.TSR origin of sulfur inthe Permian and Triassic reservoir bitumen in East SichuanBasin,China.Organic Geochemistry,41:871~878.
    Chen Tengshui,He Qin,Lu Hong,Peng Pingan,Liu Jinzhong.2009.Thermal simulation experiments of saturatedhydrocarbons with calcium sulfate and elemental sulfur:implications on origin of H2S.Science in China(Series D-EarthSciences),52:1550~1558.
    Cross M M,Manning D A C,Bottrell S H,Worden R H.2004.Thermochemical sulphate reduction(TSR):experimentaldetermination of reaction kinetics and implications of theobserved reaction rates for petroleum reservoirs.OrganicGeochemistry,35:393~404.
    Dhannoun H Y,Fyfe W S.1972.Reaction rates of hydrocarbonswith anhydrite.Progress in Experimental Petrology,2:69~71.
    Ding Kangle,Li Shuyuan,Yue Changtao,Zhong Ningning.2007.Simulation experiments on thermochemical sulfate reductionusing natural gas.Journal of Fuel Chemistry and Technology,35:401~406.
    Ding Kangle,Li Shuyuan,Yue Changtao,Zhong Ningning.2008.Simulation experiments on the reaction system of CH4-MgSO4-H2O.Chinese Science Bulletin,53:1071~1078.
    Ding Kangle,Li Shuyuan,Yue Changtao,Zhong Ningning.2010.Investigation of two kinds of thermochemical sulfate reductionsystems.Energy Sources,Part A,32:1130~1141.
    Ding Kangle,Wang Shasha,Li Shuyuan,Yue Changtao.2011.Thermochemical reduction of magnesium sulfate by natural gas:insights from an experimental study.Geochemical Journal,45:97~108.
    Ding Kangle,Wang Shasha,Li Shuyuan,Yue Changtao.2011.Thermochemical reduction of magnesium sulfate by natural gas:insights from an experimental study.Geochemical Journal,45:97~108.Goldhaber M B,Orr W L.1995.Kinetic controls onthermochemical sulfate reduction as a source of sedimentaryH2S.In:Vairavamurthy M A,Schoonen M A A,eds.Geochemical Transformations of Sedimentary Sulfur.ACSSymposium Series612,412~425.
    Goldstein T P,Aizenshtat Z.1994.Thermochemical sulfatereduction-a review.Journal of Thermal Analysis,42:241~290.
    Kelemen S R,Walters C C,Kwiatek P J,Afeworki M,Sansone M,Freund H,Pottorf R J,Machel H G,Zhang T W,Ellis G S,Tang Y C,Peters K E.2008.Distinguishing solid bitumensformed by thermochemical sulfate reduction and thermalchemical alteration.Organic Geochemistry,39:1137~1143.T
    Kelemen S R,Walters C C,Kwiatek P J,Freund H,Afeworki M,Sansone M,Lamberti W A,Pottorf R J,Machel H G,PetersK E,Bolin T.2010.Characterization of solid bitumensoriginating from thermal chemical alteration and thermochemicalsulfate reduction.Geochimica et Cosmochimica Acta,74:5305~5332.
    Kiyosu Y.1980.Chemical reduction and sulfur-isotope effects ofsulfate by organic matter under hydrothermal conditions.Chemical Geology,30:47~56.
    Kiyosu Y,Krouse H R.1990.The role of organic-acid in theabiogenic reduction of sulfate and the sulfur isotope effect.Geochemical Journal,24:21~27.
    Kiyosu Y,Krouse H R.1993.Thermochemical reduction and sulfurisotopic behavior of sulfate by acetic-acid in the presence ofnative sulfur.Geochemical Journal,27:49.
    Lu Hong,Chen Tengshui,Liu Jinzhong,Peng Pingan,LuZhenhuan,Ma Qinglin.2010.Yields of H2S and gaseoushydrocarbons in gold tube experiments simulatingthermochemical sulfate reduction reactions between MgSO4andpetroleum fractions.Organic Geochemistry,41:1189~1197.
    Lu Hong,Greenwood P,Chen Tengshui,Liu Jinzhong,PengPingan.2011.The role of metal sulfates in thermochemicalsulfate reduction(TSR)of hydrocarbons:insight from theyields and stable carbon isotopes of gas products.OrganicGeochemistry,42:700~706.
    Machel H G.2001.Bacterial and thermochemical sulfate reductionin diagenetic settings:old and new insights.SedimentaryGeology,140:143~175.
    Machel H G,Krouse H R,Sassen R.1995.Products anddistinguishing criteria of bacterial and thermochemical sulfatereduction.Applied Geochemistry,10:373~389.
    Nth S.1996.High H2S contents and other effects ofthermochemical sulfate reduction in deeply buried carbonatereservoirs:a review.Geologische Rundschau,86:275~287.
    Ohmoto H,Lasaga A C.1982.Kinetics of reactions betweenaqueous sulfates and sulfides in hydrothermal systems.Geochimica et Cosmochimica Acta,46:1727~1745.
    Pan Changchun,Yu Linping,Liu Jinzhong,Fu Jiamo.2006.Chemical and carbon isotopic fractionations of gaseoushydrocarbons during abiogenic oxidation.Earth and PlanetaryScience Letters,246:70~89.
    Powell T G,Macqueen R W.1984.Precipitation of sulfide ores andorganic matter:sulfate reactions at Pine Point,Canada.Science,224:63~66.
    Sassen R.1988.Geochemical and carbon isotopic studies of crude oildestruction,bitumen precipitation,and sulfate reduction in thedeep Smackover Formation.Organic Geochemistry,12:351~361.
    Simpson G,Yang C,Hutcheon I.1996.Thermochemical sulfatereduction:a local process that does not generate thermalanomalies.In:Ross G M,ed.1995Alberta BasementTransects Workshop,Lithoprobe Report51,241~245.
    Stasiuk L D.1997.The origin of pyrobitumens in Upper DevonianLeduc Formation gas reservoirs,Alberta,Canada:an opticaland EDS study of oil to gas transformation.Marine andPetroleum Geology,14:915~929.
    Tang Yongchun,Ellis G S,Zhang Tongwei,Jin Yongbin.2005.Effect of aqueous chemistry on the thermal stability ofhydrocarbons in petroleum reservoirs.Geochimica etCosmochimica Acta Supplement,69:A559.
    Trudinger P A,Chambers L A,Smith J W.1985.Low temperaturesulfate reduction:biological versus abiological.CanadianJournal of Earth Sciences,22:1910~1918.
    Wilson N S F.2000.Organic petrology,chemical composition,andreflectance of pyrobitumen from the El Soldado Cu deposit,Chile.International Journal of coal Geology,43:53~82.
    Worden R H,Smalley P C,Oxtoby N H.1995.Gas souring bythermochemical sulfate reduction at140℃.AmericanAssociation of Petroleum Geologists Bulletin,79:854~863.
    Worden R H,Smalley P C.1996.H2S-producing reactions in deepcarbonate gas reservoirs:Kuff Formation,Abu Dhabi.Chemical Geology,133:157~171.
    Worden R H,Smalley P C,Fallick A E.1997.Sulfur cycle inburied evaporates.Geology,25:643~646.
    Yue Changtao,Li Shuyuan,Ding Kangle,Zhong Ningning.2006.Thermodynamics and kinetics of reactions between C1-C3hydrocarbons calcium sulfate in deep carbonate reservoirs.Geochemical Journal,40:87~94.
    Zhang Shuichang,Shuai Yanhua,Zhu Guangyou.2008.TSRpromotes the formation of oil-cracking gases:evidence from
    simulation experiments.Science in China(Series D:EarthSciences),51:451~455.
    Zhang Tongwei,Ellis G S,Wang Kangshi,Walters C C,Kelemen SR,Gillaizeau B,Tang Yongchun.2007.Effect of hydrocarbontype on thermochemical sulfate reduction.OrganicGeochemistry,38:897~910.
    Zhang Tongwei,Ellis G S,Walters C C,Kelemen S R,WangKangshi,Tang Yongchun.2008a.Geochemical signatures ofthermochemical sulfate reduction in controlled hydrous pyrolysisexperiments.Organic Geochemistry,39:308~328.
    Zhang Tongwei,Amrani A,Ellis G S,Ma Qisheng,TangYongchun.2008b.Experimental investigation onthermochemical sulfate reduction by H2S initiation.Geochimicaet Cosmochimica Acta,72(Supplement):3518~3530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700