用户名: 密码: 验证码:
Twist-driven separation of p-type and n-type dopants in single-crystalline nanowires
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Twist-driven separation of p-type and n-type dopants in single-crystalline nanowires
  • 作者:Dong-Bo ; Zhang ; Xing-Ju ; Zhao ; Gotthard ; Seifert ; Kinfai ; Tse ; Junyi ; Zhu
  • 英文作者:Dong-Bo Zhang;Xing-Ju Zhao;Gotthard Seifert;Kinfai Tse;Junyi Zhu;College of Nuclear Science and Technology, Beijing Normal University;Beijing Computational Science Research Center;Theoretische Chemie, Technische Universit?t Dresden;Department of Physics, the Chinese University of Hong Kong;
  • 英文关键词:twist;;codoping;;nanowire;;generalized Bloch theorem;;bond orbital theory
  • 中文刊名:NASR
  • 英文刊名:国家科学评论(英文版)
  • 机构:College of Nuclear Science and Technology, Beijing Normal University;Beijing Computational Science Research Center;Theoretische Chemie, Technische Universit?t Dresden;Department of Physics, the Chinese University of Hong Kong;
  • 出版日期:2019-05-15
  • 出版单位:National Science Review
  • 年:2019
  • 期:v.6
  • 基金:supported by the National Natural Science Foundation of China(11674022 and U1530401);; supported by the Fundamental Research Funds for the Central Universities;; supported by start-up funding,Hong Kong Research Grant Council funding(14319416);; direct grants(4053233,4053134,and 3132748) at the Chinese University of Hong Kong;; supported by Postdoctoral innovative talents support program(BX201700025)
  • 语种:英文;
  • 页:NASR201903027
  • 页数:8
  • CN:03
  • ISSN:10-1088/N
  • 分类号:162-169
摘要
The distribution of dopants significantly influences the properties of semiconductors, yet effective modulation and separation of p-type and n-type dopants in homogeneous materials remain challenging,especially for nanostructures. Employing a bond orbital model with supportive atomistic simulations, we show that axial twisting can substantially modulate the radial distribution of dopants in Si nanowires(NWs)such that dopants of smaller sizes than the host atom prefer atomic sites near the NW core, while dopants of larger sizes are prone to staying adjacent to the NW surface. We attribute such distinct behaviors to the twist-induced inhomogeneous shear strain in NW. With this, our investigation on codoping pairs further reveals that with proper choices of codoping pairs, e.g. B and Sb, n-type and p-type dopants can be well separated along the NW radial dimension. Our findings suggest that twisting may lead to realizations of p–n junction configuration and modulation doping in single-crystalline NWs.
        The distribution of dopants significantly influences the properties of semiconductors, yet effective modulation and separation of p-type and n-type dopants in homogeneous materials remain challenging,especially for nanostructures. Employing a bond orbital model with supportive atomistic simulations, we show that axial twisting can substantially modulate the radial distribution of dopants in Si nanowires(NWs)such that dopants of smaller sizes than the host atom prefer atomic sites near the NW core, while dopants of larger sizes are prone to staying adjacent to the NW surface. We attribute such distinct behaviors to the twist-induced inhomogeneous shear strain in NW. With this, our investigation on codoping pairs further reveals that with proper choices of codoping pairs, e.g. B and Sb, n-type and p-type dopants can be well separated along the NW radial dimension. Our findings suggest that twisting may lead to realizations of p–n junction configuration and modulation doping in single-crystalline NWs.
引文
1.Cui Y,Duan X and Hu J et al.Doping and electrical transport in silicon nanowires.J Phys Chem B 2000;104:5213-6.
    2.Cui Y and Lieber CM.Functional nanoscale electronic devices assembled using silicon nanowire building blocks.Science2001;291:851-3.
    3.Duan X,Huang Y and Cui Y et al.Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices.Nature 2001;409:66-9.
    4.Zhong Z,Qian F and Wang D et al.Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices.Nano Lett 2003;3:343-6.
    5.Yuhas BD,Zitoun DO and Pauzauskie PJ et al.Transition-metal doped zinc oxide nanowires.Angew Chem Int Ed 2006;118:434-7.
    6.Liu C,Sun J and Tang J et al.Zn-doped p-type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis.Nano Lett 2012;12:5407-11.
    7.Hochbaum AI and Yang P.Semiconductor nanowires for energy conversion.Chem Rev 2010;110:527-46.
    8.Tian B,Kempa TJ and Lieber CM.Single nanowire photovoltaics.Chem Soc Rev 2009;38:16-24.
    9.Tian B,Zheng X and Kempa TJ et al.Coaxial silicon nanowires as solar cells and nanoelectronic power sources.Nature 2007;449:885-9.
    10.Qian F,Li Y and Gradecak S et al.Gallium nitride-based nanowire radial heterostructures for nanophotonics.Nano Lett2004;4:1975-9.
    11.Garnett EC and Yang P.Silicon nanowire radial p-n junction solar cells.J Am Chem Soc 2008;130:9224-5.
    12.Zhang JZ,Tse KF and Zhang Y et al.A brief review of co-doping.Front Phys 2016;11:117405.
    13.Lauhon LJ,Gudiksen MS and Wang D et al.Epitaxial core-shell and core-multishell nanowire heterostructures.Nature 2002;420:57-61.
    14.Dong Y,Yu G and Mc Alpine MC et al.Si/a-Si core/shell nanowires as nonvolatile crossbar switches.Nano Lett 2008;8:386-91.
    15.Cui LF,Ruffo R and Chan CK et al.Crystalline-amorphous coreshell silicon nanowires for high capacity and high current battery electrodes.Nano Lett 2009;9:491-5.
    16.Dillen DC,Wen F and Kim K et al.Coherently strained SiSix Ge1-x core-shell nanowire heterostructures.Nano Lett2016;16:392-8.
    17.Conesa-Boj S,Li A and Koelling S et al.Boosting hole mobility in coherently strained[110]-oriented Ge-Si core-shell nanowires.Nano Lett 2017;17:2259-64.
    18.Limpijumnong S,Zhang SB and Wei SH et al.Doping by large-size-mismatched impurities:the microscopic origin of arsenic-or antimony-doped p-type zinc oxide.Phys Rev Lett 2004;92:155504.
    19.Zhu J,Liu F and Stringfellow GB et al.Strain-enhanced doping in semiconductors:effects of dopant size and charge state.Phys Rev Lett 2010;105:195503.
    20.Zhu J and Wei SH.Tuning doping site and type by strain:enhanced p-type doping in Li doped Zn O.Solid State Commun 2011;151:1437-9.
    21.Han J,Chan TL and Chelikowsky JR.Quantum confinement,core level shifts,and dopant segregation in p-doped Si(110)nanowires.Phys Rev B 2010;82:153413.
    22.Ng MF,Sullivan MB and Tong SW et al.First-principles study of silicon nanowire approaching the bulk limit.Nano Lett 2011;11:4794-9.
    23.Peelaers H,Partoens B and Peeters FM.Formation and segregation energies of b and p doped and bp codoped silicon nanowires.Nano Lett2006;6:2781-4.
    24.Leao CR,Fazzio A and da Silva AJR.Confinement and surface effects in b and p doping of silicon nanowires.Nano Lett 2008;8:1866-71.
    25.Rurali R.Colloquium:structural,electronic,and transport properties of silicon nanowires.Rev Mod Phys 2010;82:427-49.
    26.Chelikowsky JR,Alemany MMG and Chan TL et al.Computational studies of doped nanostructures.Rep Prog Phys 2011;74:046501.
    27.Bistritzer R and Mac Donald AH.Moire bands in twisted double-layer graphene.Proc Natl Acad Sci USA 2011;108:12233-7.
    28.Cao Y,Fatemi V and Fang S et al.Unconventional superconductivity in magicangle graphene superlattices.Nature 2018;556:43-50.
    29.Cohen-Karni T,Segev L and Srur-Lavi O et al.Torsional electromechanical quantum oscillations in carbon nanotubes.Nat Nanotechnol 2006;1:36-41.
    30.Fennimore AM,Yuzvinsky TD and Han WQ et al.Rotational actuators based on carbon nanotubes.Nature 2003;424:408-10.
    31.Wallentin J,Jacobsson D and Osterhoff M et al.Bending and twisting lattice tilt in strained core-shell nanowires revealed by nanofocused x-ray diffraction.Nano Lett 2017;17:4143-50.
    32.Popov I,Gemming S and Okano S et al.Electromechanical switch based on Mo6S6 nanowires.Nano Lett 2008;8:4093-7.
    33.Harrison WA.Elementary Electronic Structure.Singapore:World Scientific,1999.
    34.Dillen DC,Kim K and Liu ES et al.Radial modulation doping in core-shell nanowires.Nat Nanotechnol 2014;9:116-20.
    35.Amato M,Ossicini S and Rurali R.Band-offset driven efficiency of the doping of Si Ge core-shell nanowires.Nano Lett 2011;11:594-8.
    36.Zhang DB and Wei SH.Inhomogeneous strain-induced half-metallicity in bent zigzag graphene nanoribbons.npj Comput Mater 2017;3:32.
    37.Yue L,Seifert G and Chang K et al.Effective Zeeman splitting in bent lateral heterojunctions of graphene and hexagonal boron nitride:a new mechanism towards half-metallicity.Phys Rev B 2017;96:201403.
    38.Elstner M,Porezag D and Jungnickel G et al.Self-consistent-charge densityfunctional tight-binding method for simulations of complex materials properties.Phys Rev B 1998;58:7260-8.
    39.Rurali R and Hernandez E.Trocadero:a multiple-algorithm multiplemodel atomistic simulation program.Comput Mater Sci 2003;28:85-106.
    40.Sato K,Castaldini A and Fukata N et al.Electronic level scheme in boron-and phosphorus-doped silicon nanowires.Nano Lett 2012;12:3012-7.
    41.Kim S,Park JS and Chang KJ.Stability and segregation of b and p dopants in Si/SiO2core-shell nanowires.Nano Lett 2012;12:5068-73.
    42.Lee H and Choi HJ.Single-impurity scattering and carrier mobility in doped Ge/Si core-shell nanowires.Nano Lett 2010;10:2207-10.
    43.Lee B and Rudd RE.First-principles study of the Young’s modulus of Si(001)nanowires.Phys Rev B 2007;75:041305.
    44.Ericksen JL.Phase Transformations and Material Instabilities in Solids.New York:Academic Press,1984.
    45.Keating PN.Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure.Phys Rev 1966;145:637-45.
    46.Martins JL and Zunger A.Bond lengths around isovalent impurities and in semiconductor solid solutions.Phys Rev B 1984;30:6217-20.
    47.Franceschetti A,Wei SH and Zunger A.Absolute deformation potentials of Al,Si,and NaCl.Phys Rev B 1994;50:17797-801.
    48.Mao Y,Zheng Y and Li C et al.Programmable bidirectional folding of metallic thin films for 3d chiral optical antennas.Adv Mater 2017;29:1606482.
    49.Chalapat K,Chekurov N and Jiang H et al.Self-organized origami structures via ion-induced plastic strain.Adv Mater 2013;25:91-5.
    50.Park BC,Jung KY and Song WY et al.Bending of a carbon nanotube in vacuum using a focused ion beam.Adv Mater 2006;18:95-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700