用户名: 密码: 验证码:
双波长外腔面发射激光器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dual-wavelength external-cavity surface-emitting laser
  • 作者:邱小浪 ; 王爽爽 ; 张晓健 ; 朱仁江 ; 张鹏 ; 郭于鹤洋 ; 宋晏蓉
  • 英文作者:Qiu Xiao-Lang;Wang Shuang-Shuang;Zhang Xiao-Jian;Zhu Ren-Jiang;Zhang Peng;Guo-Yu He-Yang;Song Yan-Rong;College of Physics and Electronic Engineering, Chongqing Normal University;College of Applied Sciences, Beijing University of Technology;
  • 关键词:外腔面发射激光器 ; 双波长 ; Y型腔 ; 偏振分束片
  • 英文关键词:external cavity surface emitting laser;;dual wavelength;;Y-cavity;;polarizing beam splitter
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:重庆师范大学物理与电子工程学院;北京工业大学应用数理学院;
  • 出版日期:2019-04-30 10:09
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:重庆市基础研究与前沿探索项目(批准号:cstc2015jcyjBX0098,cstc2018jcyjAX0319);; 国家自然科学基金(批准号:61575011);; 重庆市高校创新团队项目(批准号:CXTDX201601016);; 教育部“蓝火计划”(惠州)产学研联合创新资金项目(批准号:CXZJHZ201728)资助的课题~~
  • 语种:中文;
  • 页:WLXB201911016
  • 页数:6
  • CN:11
  • ISSN:11-1958/O4
  • 分类号:140-145
摘要
双波长激光光源在干涉测量、非线性频率变换产生中红外及太赫兹波段相干辐射等方面有重要的应用.外腔面发射激光器具有输出功率高、光束质量好、发射波长可设计等突出优势,非常适合用于双波长的产生.用有源区为In0.185Ga0.815As/GaAs应变多量子阱、设计波长为960 nm,以及有源区为In0.26Ga0.74As/GaAsP0.02应变多量子阱、设计波长为1080 nm的两块半导体增益芯片,在一个共线Y型谐振腔中,获得了激光波长分别为953 nm和1100 nm的双波长输出,对应光谱线宽为1.1 nm和2.7 nm,波长间隔147 nm.室温下,每块增益芯片的抽运吸收功率均为5.8 W时,双波长激光器总的输出功率达到293 mW.
        Dual-wavelength laser sources have important applications in the interferometry and the nonlinearfrequency-conversion generated mid-infrared or terahertz-band coherent radiation. Vertical-external-cavity surface-emitting lasers own outstanding advantages such as high output power, good beam quality and flexible emission wavelength, which make them very suitable for dual-wavelength running. In this paper, we employ a collinear Y-type cavity to produce a dual-wavelength laser. There are two semiconductor gain chips in the resonant cavity, one has an active region of In0.185 Ga0.815 As/GaAs strained multiple quantum wells and a designed wavelength of 960 nm, and the other has an active region of In0.26 Ga0.74 As/GaAsP0.02 strained multiple quantum wells and a target wavelength of 1080 nm. The peak wavelength of the photoluminescence of chip 1 is950 nm, which is 10 nm shorter than the designed wavelength under weak pump, and the peak wavelength of the photoluminescence of chip 2 is 1094 nm, which is 14 nm longer than the target wavelength under low pump.When the pump power is increased, the peak wavelengths of the photoluminescence of two gain chips are both red-shifted. The oscillating laser wavelengths are centered at 953 nm and 1100 nm, the corresponding full width at half maximum(FWHM) values of the laser spectra are 1.1 nm and 2.7 nm, respectively. The wavelength spacing of the dual-wavelength is 147 nm, and the related mid-infrared coherent radiation is about 7.1 μm on the assumption that the dual-wavelength laser is used for difference frequency generation. When the absorbed pump power of each gain chip is 5.8 W, the total output power of the dual-wavelength laser reaches 293 mW at room temperature.
引文
[1]Su J 2003 Infrared Laser Eng.32 359(in Chinese)[苏俊宏2003红外与激光工程32 359]
    [2]Li J 2005 Chin.J.Biomed.Eng.24 237(in Chinese)[李践2005中国生物医学工程学报24 237]
    [3]Mao Q,Lit J W Y 2002 IEEE Photonic Tech.L.14 1252
    [4]Schlager J B,Kawanishi S,Saruwatari M 1991 Electron.Lett.27 2072
    [5]Kawase K,Mizuno M,Sohma S,Takahashi H,Taniuchi T,Urata Y,Wada S,Tashiro H,Ito H 1999 Opt.Lett.24 1065
    [6]Tittel F K,Richter D,Fried A 2003 Mid-infrared Laser Applications in Spectroscopy(Springer,Berlin,Heidelberg)pp458-529
    [7]Beck M,Hofstetter D,Aellen T,Faist J,Oesterle U,Ilegems M,Gini E,Melchior H 2002 Science 295 301
    [8]Willer U,Saraji M,Khorsandi A,Geiser P,Schade W 2006Opt.Laser Eng.44 699
    [9]Waynant R W,Ilev I K,Gannot I 2001 Phil.Trans.R.Soc.A 359 635
    [10]Jeon M Y,Kim N,Shin J,Jeong J S,Han S P,Lee C W,Leem Y A,Yee D S,Chun H S,Park K H 2010 Opt.Express18 12291
    [11]Jackson S D 2012 Nat.Photonics 6 423
    [12]Lee B G,Belkin M A,Audet R,MacArthur J,Diehl L,Pflügl C,Capasso F,Oakley D C,Chapman D,Napoleone A,Bour D,Corzine S,H?fler G,Faist J 2007 Appl.Phys.Lett.91 231101
    [13]Schiessl U P,Rohr J 1999 Infrared Phys.Tech.40 325
    [14]Budni P A,Pomeranz L A,Lemons M L,Miller C A,Mosto J R,Chicklis E P 2000 J.Opt.Soc.Am 17 723
    [15]Hastie J E,Calvez S,Dawson M D,Leinonen T,Laakso A,Lyytik?inen J,Pessa M 2005 Opt.Express 13 77
    [16]Fan L,Hader J,Schillgalies M,Fallahi M,Zakharian A R,Moloney J V,Bedford R,MurrayJ T,Koch S W,Stolz W2005 IEEE Photonic Tech.L.17 1764
    [17]Fallahi M,Fan L,Kaneda Y,Hessenius C,Hader J,Li H,Moloney J V,Kunert B,Stolz W,Koch S W,Murray J,Bedford R 2008 IEEE Photonic Tech.L.20 1700
    [18]Maclean A J,Kemp A J,Calvez S,Kim J Y,Kim T,Dawson M D,Burns D 2008 IEEE J.Quantum Elect.44 216
    [19]Fallahi M,Hessenius C,Kaneda Y,Hader J,Moloney J V,Kunert B,Stolz W,Koch S W 2009 Nonlinear Optics:Materials,Fundamentals and Applications Honolulu,Hawaii,July 12-17,2009 pNThC1
    [20]De Groot P J,McGarvey J A 1994 US Patent 5 371
    [21]Keller U,Tropper A C 2006 Phys.Rep.429 67
    [22]Zhu R,Wang S,Qiu X,Chen X,Jiang M,Guo-Yu H,Zhang P,Song Y 2018 J.Lumin.204 663
    [23]Abram R H,Gardner K S,Riis E,Ferguson A I 2004 Opt.Express 12 5434
    [24]Alfieri C G,Waldburger D,Golling M,Keller U 2018 IEEEPhotonic Tech.L.30 525
    [25]Jasik A,Sokó?A K,Broda A,Sankowska I,Wójcik-Jedlinska A,Wasiak M,Kubacka-Traczyk J,Muszalski J 2016 Appl.Phys.B 122 23
    [26]Polanik M 2015 Annual Report,Institute of Optoelectronics,Ulm University 3
    [27]Leinonen T,Ranta S,Laakso A,Morozov Y,Saarinen M,Pessa M 2007 Opt.Express 15 13451
    [28]Hessenius C,Lukowski M,Fallahi M 2012 Appl.Phys.Lett.101 121110
    [29]Lukowski M,Hessenius C,Bedford R,Fallagi M 2015 Opt.Lett.40 4174
    [30]Zhang F,Gaafar M,M?ller C,Stolz W,Koch M,RahimiIman A 2016 IEEE Photonic Tech.L.28 927
    [31]Sandusky J V,Brueck S R J 1996 IEEE Photonic Tech.L.8313

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700