用户名: 密码: 验证码:
酒糟酶解液及不同效应因子对发酵产细菌纤维素的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of vinasse enzymatic hydrolysate and different factors on the fermentation for bacterial cellulose yield
  • 作者:贺富强 ; 杨慧敏 ; 李周 ; 曾礼兰 ; 胡承
  • 英文作者:HE Fuqiang;YANG Huimin;LI Zhou;ZENG Lilan;HU Cheng;Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, School of Life Science, Sichuan University;
  • 关键词:细菌纤维素 ; 酒糟酶解液 ; 葡糖醋杆菌 ; 增效作用
  • 英文关键词:bacterial cellulose;;vinasse enzymatic hydrolysate;;Gluconacetobacter xylinus;;synergistic effect
  • 中文刊名:ZNGZ
  • 英文刊名:China Brewing
  • 机构:四川大学生命科学学院生物资源与生态环境教育部重点实验室;
  • 出版日期:2019-01-25
  • 出版单位:中国酿造
  • 年:2019
  • 期:v.38;No.323
  • 语种:中文;
  • 页:ZNGZ201901015
  • 页数:5
  • CN:01
  • ISSN:11-1818/TS
  • 分类号:73-77
摘要
将酒糟酶解液添加到HS培养基中,探究其不同添加量及玉米浆、黄水、Mg SO4、乙醇、柠檬酸和Na_2HPO_4 6种效应因子对木葡糖醋杆菌(Gluconacetobacter xylinus)发酵产细菌纤维素(BC)的影响。结果表明,酒糟酶解液可显著提高BC产量和还原糖的转化率(P<0.05),且当其完全替代HS培养基时,BC产量和还原糖转化率均达到最大,分别为4.84 g/L和31.54%,与HS培养基的细菌纤维素产量和糖转化率相比,分别提高了135.3%和134.0%。玉米浆、黄水、Mg SO_4、柠檬酸、乙醇和Na_2HPO_4·12H_2O在酶解液中的最适添加量分别为4%、10%、0.6 g/L、1.5 g/L、0.8%和2 g/L,BC最大产量分别为5.91 g/L、7.05 g/L、5.51 g/L、6.08 g/L、5.83 g/L和6.56 g/L,与对照组酶解液的BC产量相比均有显著性提高(P<0.05),其中黄水的增效作用最为显著(P<0.05),BC产量是HS培养基的3.4倍。
        The effects of vinasse enzymatic hydrolysate on bacterial cellulose(BC) production by Gluconacetobacter xylinus were investigated by HS medium, and the effects of six effecting factors of corn syrup, yellow water, MgSO_4, ethanol, citric acid and Na_2HPO_4 with different addition on bacterial cellulose yield by G. xylinus fermentation were investigated as well. The results showed that the vinasse enzymatic hydrolysate could significantly increase BC yield and reducing sugar conversion rate(P<0.05). When HS medium was completely replaced by vinasse enzymatic hydrolysate,BC yield and reducing sugar conversion rate reached the maximum, which were 4.84 g/L and 31.54%, respectively. Compared with HS medium, the BC yield and sugar conversion rate increased by 135.3% and 134.0%, respectively. The optimum additions of corn pulp, yellow water, MgSO_4, citric acid, ethanol and Na_2HPO_4·12H_2O in the enzymatic hydrolysate were 4%, 10%, 0.6 g/L, 1.5 g/L, 0.8% and 2 g/L, respectively. The maximum BC yield was 5.91 g/L, 7.05 g/L, 5.51 g/L, 6.08 g/L, 5.83 g/L and 6.56 g/L, respectively. Compared with enzymatic hydrolysate, the BC yield was significantly enhanced(P<0.05). The synergistic effect of yellow water was the most significant(P<0.05), and the BC yield was 3.4 times higher than that of in HS medium.
引文
[1] WU J M, LIU R H. Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus[J]. Carhohyd Polym,2012, 90(1):l16-121.
    [2] SAIED H E, BASTA A H, GOBRAN R H. Research progress in friendly environmental technology for the production of cellulose products(bacterial cellulose and its application)[J]. Polym-Plast Technol Eng, 2004,43(3):797-820.
    [3] HSIEH C, HSU T H, YANG F C. Production of polysaccharides of Ganoderma lucidum,(CCRC36021)by reusing thin stillage[J]. Process Biochem,2005, 40(2):909-916.
    [4] HUANG C, GUO H J, XIONG L, et al. Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus[J]. Carbohyd Polym, 2016, 136:198-202.
    [5] HUANG Y, ZHU C, YANG J, et al. Recent advances in bacterial cellulose[J]. Cellulose, 2014, 21(1):1-30.
    [6] VELASQUEZ-RIANO M, BOJACA V. Production of bacterial cellulose from alternative low-cost substrates[J]. Cellulose, 2017, 24(7):2677-2698.
    [7] ZHENG C, YANG R, XU L, et al. Green synthesis of bacterial cellulose via acetic acid pre-hydrolysis liquor of agricultural corn stalk used as carbon source[J]. Bioresource Technol, 2017, 234(3):8-14.
    [8] PACHECO G, NOGUEIRA C R, MENEGUIN A B, et al. Development and characterization of bacterial cellulose produced by cashew tree residues as alternative carbon source[J]. Ind Crops Prod, 2017, 107(2):13-19.
    [9] LI Z, WANG L, HUA J, et al. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum[J]. Carbohyd Polym, 2015, 120(2):115-119.
    [10] LEVER M. Carbohydrate determination with 4-hydroxybenzoic acid hydrazide(PAHBAH):effect of bismuth on the reaction[J]. Anal Biochem,1977, 81(1):21-27.
    [11] SCHRAMM M, HESTRJN S. Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinuln[J]. J Gen Microbiol, 1954, 11(1):123-129.
    [12]陈华美,刘四新,李从发.细菌纤维素的生物合成与发酵研究进展[J].热带作物学报,2016,37(8):1651-1657.
    [13] EMBUSCADO M E, MARKS J S, BEMILLER J N. Bacterial cellulose.I. Factors affecting the production of cellulose by Acetobacter xylinum[J]. Food Hydrocolloid, 1994, 8(5):407-418.
    [14] KESHK S M. Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus[J]. Carbohyd Polym, 2014, 99(1):98-100.
    [15]鲁敏,吕璇,关晓辉.玉米浆干粉缓冲能力对发酵生产细菌纤维素的影响[J].食品研究与开发,2014,35(1):84-87.
    [16]李飞,陈琳,唐晓燕,等.以玉米浆和木薯为原料机械搅拌发酵制备细菌纤维素的研究[J].工业微生物,2014,44(2):7-13.
    [17]张丽平,卢红梅,戴锐,等.乙醇及有机酸对木醋杆菌合成细菌纤维素的影响[J].食品工业科技,2014,35(4):161-165.
    [18]王传荣,沈洪涛.黄水在新型白酒生产中的应用[J].中国酿造,2005,24(2):26-28.
    [19] YANG J X, CHEN S Y, WANGH P. Progress on bacterial cellulose fermentation technology and application[J]. Polymer Bulletin, 2013, 15(10):115-128.
    [20]马霞,王瑞明,关凤梅,等.非碳水化合物对木醋杆菌合成细菌纤维素影响规律的初探[J].中国酿造,2003,22(4):15-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700