用户名: 密码: 验证码:
用于2型糖尿病研究的3D多器官芯片
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Establishment of 3D Organ Chip for Multiplexed Assessment of Type 2 Diabetes Drugs
  • 作者:由岫 ; 张秀莉 ; 罗勇 ; 刘立朝 ; 赵伟杰 ; 林炳承
  • 英文作者:YOU Xiu;ZHANG Xiu-Li;LUO Yong;LIU Li-Chao;ZHAO Wei-Jie;LIN Bing-Cheng;Dalian University of Technology;College of Phrmaceutical Sciences, Soochow University;The Second Affiliated Hospital of Dalian Medical University;Dalian Institute of Chemical Physics, Chinese Academy of Sciences;
  • 关键词:器官芯片 ; 脂肪 ; 胰岛 ; 利拉鲁肽 ; 2型糖尿病
  • 英文关键词:organ chip;;fat;;islet;;liraglutide;;type 2 diabetes
  • 中文刊名:SHSW
  • 英文刊名:Progress in Biochemistry and Biophysics
  • 机构:大连理工大学;苏州大学药学院;大连医科大学附属第二医院;中国科学院大连化学物理研究所;
  • 出版日期:2019-06-20
  • 出版单位:生物化学与生物物理进展
  • 年:2019
  • 期:v.46
  • 基金:国家自然科学基金面上项目(21675017);; 辽宁省自然科学基金项目(20180550386)资助~~
  • 语种:中文;
  • 页:SHSW201906010
  • 页数:11
  • CN:06
  • ISSN:11-2161/Q
  • 分类号:93-103
摘要
2型糖尿病是一种全身性代谢性疾病,通常涉及多个组织和器官之间因相互作用而导致胰岛素抵抗以及胰岛功能衰竭的最终状态.本文建立了脂肪3D器官芯片、胰岛3D器官芯片及其联合应用的模型,可对2型糖尿病的发病过程和药物治疗进行多重评价.设计了一种双通道复合式微流控芯片,将脂肪器官分泌的细胞因子以及脂多糖(LPS)共同引入胰岛器官的芯片培养室,芯片通道连续灌流以模拟体液交换.通过分析脂肪细胞和胰岛细胞的脂联素(ADP)、白介素6 (IL-6)和白介素1β(IL-1β)等炎症因子的分泌情况,以及胰岛细胞的胰岛素分泌能力与对照组细胞相比较所产生的变化,分析胰岛细胞的损伤情况以及系统内炎症反应情况.结果表明,LPS可以引起胰岛细胞的炎症反应以及功能性变化,且脂肪组织的存在能一定程度上加重这种反应,利拉鲁肽(liraglutide)通过减少脂肪和胰岛细胞的炎症反应,能够减轻LPS以及脂肪组织对胰岛细胞的刺激,以改善胰岛细胞的功能.基于微流控芯片的脂肪器官和胰岛器官联合应用的平台可应用于由不同组织之间的相互作用而产生的多器官疾病反应,有望成为2型糖尿病等全身代谢类疾病药物评价的有力工具.
        Type 2 diabetes is a systematic metabolic disease that involves complex interplay of multiple organs,of which adipose tissue and pancreatic islet are two key organs related to its pathogenesis. In this paper, models of fat 3D organ chip, islet 3D organ chip and their combination were established, which can be used to study the pathogenesis and to assess the mechanism of hypoglycemic agents for treatment of type 2 diabetes. A two-channel composite microfluidic chip was designed to study the effects of lipopolysaccharide(LPS) first on fat cells in one chip chamber and on islet cell in a seperate chip culture chamber. The chip channel was continuously perfused to simulate constantly changes in contents of the body fluid. The secretion of inflammatory factors such as adiponectin(ADP), interleukin-6(IL-6) and interleukin-1β(IL-1β) from adipocytes and islet cells, the insulin secretion from islet cells, and islet cell survival rate in medium flashed with LPS or LPS/liraglutide were compared with those from cells flashed with the control medium. The results showed that LPS decreased ADP production from fat 3D organ chip, in islet 3D organ chip, and in fat/islet 3D double organ chip, LPS promoted IL-1β and IL-6 production from fat 3D organ chip and 3D fat/islet double organ chip, but not from islet 3D organ chip. Liraglutide could improve the production of ADP, and decreased IL-1β, IL-6 from fat 3D organ chip and fat/islet 3D double organ chip, but no effects on islet 3D organ chip. LPS and liraglutide separate or in combination had no effect on insulin production from islet 3D organ chip, but LPS decreased insulin production from fat/islet3D double organ chip, liraglutide improved the decreased insulin production from fat/islet double organ chip due to LPS. The platform for the combined application of the fat organ and the islet organ based on the microfluidic chip can be applied to the multi-organ disease reaction caused by the interaction between different tissues and is expected to be a powerful tool for drug evaluation of systemic metabolic diseases such as type 2 diabetes.
引文
[1]Kahn S E,Hull R L,Utzschneider K M.Mechanisms linking obesity to insulin resistance and type 2 diabetes.Nature,2006,444(7121):840-846
    [2]Boden G.Role of fatty acids in the pathogenesis of insulin resistance and NIDDM.Diabetes,1997,46(1):3-10
    [3]Roden M,Price T B,Perseghin G,et al.Mechanism of free fatty acid-induced insulin resistance in humans.J Clin Invest,1996,97(12):2859-2865
    [4]Lumeng C N,Saltiel A R.Inflammatory links between obesity and metabolic disease.J Clin Invest,2011,121(6):2111-2117
    [5]Musso G,Gambino R,Cassader M.Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes.Annu Rev Med,2011,62:361-380
    [6]Frazier T H,Dibaise J K,Mcclain C J.Gut microbiota,intestinal permeability,obesity-induced inflammation,and liver injury.JPEN J Parenter Enteral Nutr,2011,35(5 Suppl):14S-20S
    [7]Zhou F,Zhang Y,Chen J,et al.Liraglutide attenuates lipopolysaccharide-induced acute lung injury in mice.Eur JPharmacol,2016,791:735-740
    [8]Ehrmann R L,Gey G O.The growth of cells on a transparent gel of reconstituted rat-tail collagen.J Natl Cancer Inst,1956,16(6):1375-1403
    [9]Volpatti L R,Yetisen A K.Commercialization of microfluidic devices.Trends Biotechnol,2014,32(7):347-350
    [10]Sackmann E K,Fulton A L,Beebe D J.The present and future role of microfluidics in biomedical research.Nature,2014,507(7491):181-189
    [11]Bhatia S N,Ingber D E.Microfluidic organs-on-chips.Nat Biotechnol,2014,32(8):760-772
    [12]Dehne E M,Hasenberg T,Marx U.The ascendance of microphysiological systems to solve the drug testing dilemma.Future Sci OA,2017,3(2):FSO185
    [13]Maschmeyer I,Lorenz A K,Schimek K,et al.A four-organ-chip for interconnected long-term co-culture of human intestine,liver,skin and kidney equivalents.Lab Chip,2015,15(12):2688-2699
    [14]Miller P G,Shuler M L.Design and demonstration of a pumpless14 compartment microphysiological system.Biotechnol Bioeng,2016,113(10):2213-2227
    [15]Oleaga C,Bernabini C,Smith A S,et al.Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs.Sci Rep,2016,6:20030
    [16]Lu S,Dugan C E,Kennedy R T.Microfluidic chip with integrated electrophoretic immunoassay for investigating cell-cell interactions.Anal Chem,2018,90(8):5171-5178
    [17]Nguyen D T,Van Noort D,Jeong I K,et al.Endocrine system on chip for a diabetes treatment model.Biofabrication,2017,9(1):015021
    [18]Bauer S,Wennberg Huldt C,Kanebratt K P,et al.Functional coupling of human pancreatic islets and liver spheroids on-a-chip:towards a novel human ex vivo type 2 diabetes model.Sci Rep,2017,7(1):14620
    [19]Gomes J M G,Costa J A,Alfenas R C G.Metabolic endotoxemia and diabetes mellitus:a systematic review.Metabolism,2017,68:133-144
    [20]Arana Mde J,Vallespi M G,Chinea G,et al.Inhibition of LPS-responses by synthetic peptides derived from LBP associates with the ability of the peptides to block LBP-LPS interaction.JEndotoxin Res,2003,9(5):281-291
    [21]Dai Y,Dai D,Wang X,et al.DPP-4 inhibitors repress NLRP3inflammasome and interleukin-1beta via GLP-1 receptor in macrophages through protein kinase C pathway.Cardiovasc Drugs Ther,2014,28(5):425-432
    [22]Knudsen L B,Nielsen P F,Huusfeldt P O,et al.Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration.J Med Chem,2000,43(9):1664-1669
    [23]Krasner N M,Ido Y,Ruderman N B,et al.Glucagon-like peptide-1(GLP-1)analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism.Plos One,2014,9(5):e97554
    [24]Gonzalez L L,Garrie K,Turner M D.Type 2 diabetes-an autoinflammatory disease driven by metabolic stress.Biochim Biophys Acta Mol Basis Dis,2018,1864(11):3805-3823
    [25]Shimoda M,Kanda Y,Hamamoto S,et al.The human glucagonlike peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes.Diabetologia,2011,54(5):1098-1108
    [26]Shiraki A,Oyama J,Komoda H,et al.The glucagon-like peptide 1analog liraglutide reduces TNF-alpha-induced oxidative stress and inflammation in endothelial cells.Atherosclerosis,2012,221(2):375-382

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700