用户名: 密码: 验证码:
极大望远镜高效率多通道光谱仪的光学系统设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optical System Design of High Throughput Multi-Channel Spectrograph for Very Large Telescope
  • 作者:季杭馨 ; 朱永田 ; 胡中文
  • 英文作者:Ji Hangxin;Zhu Yongtian;Hu Zhongwen;Nanjing Institute of Astronomical Optics & Technology, National Astronomical Observatories,Chinese Academy of Sciences;Key Laboratory of Astronomical Optics & Technology, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:光学设计 ; 光谱仪 ; 体位全息光栅 ; 极大望远镜
  • 英文关键词:optical design;;spectrograph;;volume phase holographic grating;;very large telescope
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:中国科学院国家天文台南京天文光学技术研究所;中国科学院天文光学技术重点实验室;中国科学院大学;
  • 出版日期:2018-11-23 09:01
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.444
  • 基金:国家自然科学基金(11503059,11603054,U1831108,11603053)
  • 语种:中文;
  • 页:GXXB201903049
  • 页数:9
  • CN:03
  • ISSN:31-1252/O4
  • 分类号:403-411
摘要
建立了基于边界限制的宽波段高效率多通道光谱仪快速设计的分析模型,讨论了多通道光谱仪的性能要求、初始结构参数、项目成本、风险之间的相互关系。该模型能够根据给定的系统指标快速计算出多通道光谱仪各子系统的结构参数,能在项目初期对方案的可行性和项目预算给出合理的评估。以4 m级望远镜为平台,设计了基于体位全息光栅的多通道光谱仪,光谱范围为350~1000 nm,每个通道在闪耀波长处的分辨率为5000,光谱仪本体峰值效率大于53%,全工作波段单色像质能量集中度在80%处优于15μm,满足系统的性能要求。
        An analysis model based on boundary limits for multi-channel spectrograph with the broad band and high throughput is built. The relationships among performance requirements, initial parameters, project budget, and risk of the multi-channel spectrograph are discussed. The mathematic model can get structural parameters of each sub-system of the multi-channel spectrograph quickly according to the given system requirements. It also provide a valuable method to evaluate the feasibility of the design and cost budget reasonably at the beginning of the project. A multi-channel spectrograph based on volume phase holographic gratings is designed for the 4 m telescope. It has a wavelength range from 350 nm to 1000 nm and resolution of 5000 at the blazed wavelength in each channel. The peak efficiency of the whole spectrograph is over 53%, and the monochromatic enclosed energy at 80% is better than 15 μm with the whole working band, which meets the requirements of system performance.
引文
[1] D′Odorico S, Dekker H, Mazzoleni R, et al. X-shooter UV- to K-band intermediate-resolution high-efficiency spectrograph for the VLT: status report at the final design review[J]. Proceedings of SPIE, 2006, 6269: 626933.
    [2] Robberto M, Roming P W, van der Horst A J, et al. SCORPIO: the Gemini facility instrument for LSST follow-up[J]. Proceedings of SPIE, 2018, 10702: 107020I.
    [3] Baldry I K, Bland-Hawthorn J, Robertson J G. Volume phase holographic gratings: polarization properties and diffraction efficiency[J]. Publications of the Astronomical Society of the Pacific, 2004, 116(819): 403-414.
    [4] Tamura N, Takato N, Shimono A, et al. Prime Focus Spectrograph(PFS) for the Subaru telescope: overview, recent process, and future perspectives[J]. Proceedings of SPIE, 2016, 9908: 99081M.
    [5] Oliva E, Delabre B, Tozzi A, et al. Toward the final optical design MOONS, the Multi-Object Optical and Near-infrared Spectrometer for the VLT[J]. Proceedings of SPIE, 2016, 9908: 99087R.
    [6] de Paz A G, Gallego J, Carrasco E, et al. MEGARA: a new generation optical spectrograph for GTC[J]. Proceedings of SPIE, 2014, 9147: 91470O.
    [7] Kupke R, Ji H X, Nadar S P, et al. The wide field optical spectrograph (WFOS) for TMT: fiber-WFOS optical design[J]. Proceedings of SPIE, 2018, 10702: 1070221.
    [8] Zhu Y T, Hu Z W, Wang L, et al. Construction and commissioning of LAMOST low resolution spectrographs[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2011, 41(11): 1337-1341. 朱永田, 胡中文, 王磊, 等. LAMOST多目标光纤光谱仪的研制及试运行[J]. 中国科学: 物理学力学天文学, 2011, 41(11): 1337-1341.
    [9] Zhang K, Zhou Y F, Tang Z, et al. Mauna Kea Spectroscopic Explorer (MSE): a preliminary design of multi-object high resolution spectrograph[J]. Proceedings of SPIE, 2018, 10702: 107027W.
    [10] Buchwald K. Fused silica transmission gratings-a white paper[EB/OL]. (2015-11-03) [2018-10-08]. https:∥ibsen.com/wp-content/uploads/White-paper-Fused-Silica-Transmission- Gratings-v1.0.pdf.
    [11] Buzzoni B, Delabre B, Dekker H, et al. The ESO faint object spectrograph and camera (EFOSC)[J]. Messenger, 1984, 38: 9-13.
    [12] Gao D Y, Ji H X, Cao C, et al. WES: Weihai echelle spectrograph[J]. Publications of the Astronomical Society of the Pacific, 2016, 128(970): 125002.
    [13] Li R C, Zou G Y, Wang C C, et al. Optical design of visible and infrared integrative camera[J]. Acta Optica Sinica, 2016, 36(5): 0522002. 李瑞昌, 邹刚毅, 王臣臣, 等. 可见光与红外一体化光学系统设计[J]. 光学学报, 2016, 36(5): 0522002.
    [14] Xu F G, Huang W, Xu M F. Design of off-axis three-mirror optical system based on Wassermann-Wolf equations[J]. Acta Optica Sinica, 2016, 36(12): 1222002. 徐奉刚, 黄玮, 徐明飞. 基于Wassermann-Wolf方程的离轴三反光学系统设计[J]. 光学学报, 2016, 36(12): 1222002.
    [15] Groom D E, Bebek C J, Fabricius M, et al. Quantum efficiency characterization of LBNL CCD′s: Part 1: the Quantum Efficiency Machine[J]. Proceedings of SPIE, 2006, 6068: 60680F.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700