用户名: 密码: 验证码:
红河-哀牢山剪切带角闪岩中角闪石变形特征及地震波各向异性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Deformation Characteristics and Seismic Wave Anisotropy of Amphibole in Amphibolite from Red River-Ailao Shan Shear Zone
  • 作者:刘建华 ; 曹淑云 ; 周丁奎 ; 李俊瑜 ; 程雪梅
  • 英文作者:Liu Jianhua;Cao Shuyun;Zhou Dingkui;Li Junyu;Cheng Xuemei;State Key Laboratory of Geological Processes and Mineral Resources,School of Earth Sciences,China University of Geosciences;
  • 关键词:角闪石变形 ; 细粒化 ; EBSD晶格优选定向 ; 地震波各向异性 ; 角闪石变形机制 ; 构造地质
  • 英文关键词:amphibole deformation;;grain size reduction;;EBSD crystal orientation;;seismic wave anisotropy;;amphibole deformation mechanism;;tectonics
  • 中文刊名:DQKX
  • 英文刊名:Earth Science
  • 机构:中国地质大学地质过程与矿产资源国家重点实验室地球科学学院;
  • 出版日期:2019-04-03 11:53
  • 出版单位:地球科学
  • 年:2019
  • 期:v.44
  • 基金:国家自然科学项目(Nos.41722207,41472188);; 国家重点研发计划项目(No.2017YFC0602401)
  • 语种:中文;
  • 页:DQKX201905023
  • 页数:18
  • CN:05
  • ISSN:42-1874/P
  • 分类号:292-309
摘要
角闪岩作为中下地壳的重要物质组成,其岩石和矿物的变形行为及力学强度表现直接制约着中下地壳力学属性与状态,因此开展对其中重要组成矿物角闪石的变形行为和地震波各向异性研究,具有重要地质意义.以红河-哀牢山剪切带中出露的变形角闪岩中角闪石为研究对象,其中显微构造分析表明,变形角闪岩分别呈现出粗、中粒条带状糜棱岩和细粒条带状超糜棱岩.分别对这3种变形岩石中的角闪石矿物颗粒进行了EBSD晶格优选定向分析和地震波各向异性计算,结果表明3种变形角闪岩中的角闪石呈现出不同取向及典型晶质塑性变形特征,(100)[001]主要滑移系发育,同时发育不同程度的(010)[001]和(110)[001]次级滑移系.我们认为在剪切变形过程中,角闪石双晶滑移和解理面滑移共同作用致使角闪石细粒化.从粗粒到细粒条带状角闪石,随着角闪石颗粒粒度减小,角闪石中AV_p也有逐渐变小的趋势,表明角闪石变形行为、形态优选定向及晶格优选定向共同影响着地震波各向异性.
        Amphibolite is an important component in middle to lower crustal rocks,and the deformation behavior and mechanical strength of rocks and minerals in it control the mechanical properties and state of middle to lower crustal rocks directly,so it's quite meaningful to study amphibole's deformation behavior and seismic anisotropy.we took deformed amphibolite from Red River-Ailao Shan shear zone as our studying object.Microstructure analysis of amphibolite shows three types of mylonites:coarse-grained banded mylonite,medium-grained banded mylonite and fine-grained banded ultramylonite.we carried out EBSD crystal preferred orientation analysis and seismic anisotropy calculation of three types of amphibole respectively.Results show that these three types of amphiboles have different initial orientations and typical crystal plastic deformation,(100)[001] is the dominant slip system,furthermore,two secondary slip systems(010)[001] and(110)[001] are also developed.It is concluded that in the process of shear deformation amphibole's twin slip and cleavage plane slip contribute to the grain size reduction together.As amphibole's grain size become finer from coarse-grained banded mylonite to fine-grained banded ultramylonite,AVps of amphiboles also tend to be smaller,it indicates that amphibole's deformation behavior,shape preferred orientation and crystal preferred orientation affect its seismic wave anisotropy together.
引文
Aleksandrov,K.S.,Ryzhova,T.V.,1961.The Elastic Properties of Rock Forming Minerals,Pyroxenes and Amphiboles.Bull.Acad.Sci.USSR Geophys.Ser.,871-875:1339-1344.
    Allison,I.,La Tour,T.E.,1977.Brittle Deformation of Hornblende in a Mylonite:A Direct Geometrical Analogue of Ductile Deformation by Translation Gliding.Canadian Journal of Earth Sciences,14(8):1953-1958.https://doi.org/10.1139/e77-166
    Babaie,H.A.,La Tour,T.E.,1994.Semibrittle and Cataclastic Deformation of Hornblende-Quartz Rocks in a Ductile Shear Zone.Tectonophysics,229(1-2):19-30.https://doi.org/10.1016/0040-1951(94)90003-5
    Baker,D.W.,Carter,N.L.,1972.Seismic Velocity Anisotropy Calculated for Ultramafic Minerals and Aggregates,in Flow and Fracture of Rocks,Geophysics.Monogr.Ser.,16:157-166.
    Bestmann,M.,Prior,D.J.,2003.Intragranular Dynamic Recrystallization in Naturally Deformed Calcite Marble:Diffusion Accommodated Grain Boundary Sliding as a Result of Subgrain Rotation Recrystallization.Journal of Structural Geology,25(10):1597-1613.https://doi.org/10.1016/s0191-8141(03)00006-3
    Biermann,C.,van Roermund,H.L.M.,1983.Defect Structures in Naturally Deformed Clinoamphiboles-A TEMStudy.Tectonophysics,95(3-4):267-278.https://doi.org/10.1016/0040-1951(83)90072-0
    Birch,F.,1960.The Velocity of Compressional Waves in Rocks to 10 Kilobars:1.Journal of Geophysical Research,65(4):1083-1102.https://doi.org/10.1029/jz065i004p01083
    Brodie,K.H.,Rutter,E.,1985.On the Relationship between Deformation and Metamorphism with Special Reference to the Behavior of Basic Rocks.In:Thompson,A.B.,Rubie,D.C.,eds.,Advances in Physical Geochemistry.Springer,Berlin,138-179.
    Burlini,L.,Fountain,D.M.,1993.Seismic Anisotropy of Metapelites from the Ivrea-Verbano Zone and Serie Dei Laghi(Northern Italy).Physics of the Earth and Planetary Interiors,78(3-4):301-317.https://doi.org/10.1016/0031-9201(93)90162-3
    Cai,Z.R.,Xiang,J.Y.,Huang,Q.T.,et al.,2018.The Morphology of Nanoparticles in the Ductile Shear Zone of Red River Fault and Its Tectonic Significance.Earth Science,43(5):1524-1531(in Chinese with English abstract).
    Cao,S.Y.,Liu,J.L.,2006.Modern Techniques for the Analysis of Rock Microstructure:EBSD and Its Application.Advances in Earth Science,21(10):1091-1096(in Chinese with English abstract).
    Cao,S.Y.,Liu,J.L.,Hu,L.,2007.Micro-and Submicrostructural Evidence for High Temperature Brittle-Ductile Transition Deformation of Hornblende:Case Study of High-Grade Mylonites from Diancangshan,Western Yunnan.Science in China(Series D:Earth Sciences),37(8):1004-1013(in Chinese).
    Cao,S.Y.,Liu,J.L.,Leiss,B.,2010a.Orientation-Related Deformation Mechanisms of Naturally Deformed Amphibole in Amphibolite Mylonites from the Diancang Shan,SW Yunnan,China.Journal of Structural Geology,32(5):606-622.
    Cao,S.Y.,Liu,J.L.,Leiss,B.,et al.,2010b.New Zircon U-Pb Geochronology of the Post-Kinematic Granitic Plutons in the Diancang Shan Metamorphic Massif along the Ailao Shan-Red River Shear Zone and Its Geological Implications.Acta Geologica Sinica(English Edition),84(6):1474-1487.https://doi.org/10.1111/j.1755-6724.2010.00342.x
    Cao,S.Y.,Liu,J.L.,Leiss,B.,et al.,2011a.Oligo-Miocene Shearing along the Ailao Shan-Red River Shear Zone:Constraints from Structural Analysis and Zircon U/Pb Geochronology of Magmatic Rocks in the Diancang Shan Massif,SE Tibet,China.Gondwana Research,19(4):975-993.https://doi.org/10.1016/j.gr.2010.10.006
    Cao,S.Y.,Neubauer,F.,Liu,J.L.,et al.,2011b.Exhumation of the Diancang Shan Metamorphic Complex along the Ailao Shan-Red River Belt,Southwestern Yunnan,China:Evidence from40 Ar/39 Ar Thermochronology.Journal of Asian Earth Sciences,42(3):525-550.https://doi.org/10.1016/j.jseaes.2011.04.017
    Cheng,X.M.,Cao,S.Y.,Li,J.Y.,et al.,2018.Metamorphic,Deformation,Fluids and Geological Significance of LowTemperature Retrograde Mylonites of Diancangshan Metamorphic Massif along Ailaoshan-Red River StrikeSlip Fault Zone,Yunnan,China.Science China Earth Sciences,61(8):1023-1041.https://doi.org/10.1007/s11430-017-9194-4
    Christensen,N.I.,Mooney,W.D.,1995.Seismic Velocity Structure and Composition of the Continental Crust:AGlobal View.Journal of Geophysical Research(Solid Earth),100(B6):9761-9788.https://doi.org/10.1029/95jb00259
    Crampin,S.,Gao,Y.,Bukits,J.,2015.A Review of Retrospective Stress-Forecasts of Earthquakes and Eruptions.Physics of the Earth and Planetary Interiors,245:76-87.https://doi.org/10.1016/j.pepi.2015.05.008
    Dempsey,E.D.,Prior,D.J.,Mariani,E.,et al.,2011.MicaControlled Anisotropy within Mid-to-Upper Crustal Mylonites:An EBSD Study of Mica Fabrics in the Alpine Fault Zone,New Zealand.Geological Society,London,Special Publications,360(1):33-47.https://doi.org/10.1144/sp360.3
    Díaz Aspiroz,M.,Lloyd,G.E.,Fernández,C.,2007.Development of Lattice Preferred Orientation in Clinoamphiboles Deformed under Low-Pressure Metamorphic Conditions:A SEM/EBSD Study of Metabasites from the Aracena Metamorphic Belt(SW Spain).Journal of Structural Geology,29(4):629-645.https://doi.org/10.1016/j.jsg.2006.10.010
    Endrun,B.,Lebedev,S.,Meier,T.,et al.,2011.Complex Layered Deformation within the Aegean Crust and Mantle Revealed by Seismic Anisotropy.Nature Geoscience,4:203-207.https://doi.org/10.1038/ngeo1065
    Fliervoet,T.F.,Drury,M.R.,Choprac,P.N.,1999.Crystallographic Preferred Orientations and Misorientations in Some Olivine Rocks Deformed by Diffusion or Dislocation Creep.Tectonophysics,303(1-4):1-27.https://doi.org/10.1016/s0040-1951(98)00250-9
    Fliervoet,T.F.,White,S.H.,Drury,M.R.,1997.Evidence for Dominant Grain-Boundary Sliding Deformation in Greenschist-and Amphibolite-Grade Polymineralic Ultramylonites from the Redbank Deformed Zone,Central Australia.Journal of Structural Geology,19(12):1495-1520.https://doi.org/10.1016/s0191-8141(97)00076-x
    Getsinger,A.J.,Hirth,G.,2014.Amphibole Fabric Formation during Diffusion Creep and the Rheology of Shear Zones.Geology,42(6):535-538.https://doi.org/10.1130/g35327.1
    Gilley,L.D.,Harrison,T.M.,Leloup,P.H.,et al.,2003.Direct Dating of Left-Lateral Deformation along the Red River Shear Zone,China and Vietnam.Journal of Geophysical Research(Solid Earth),108(B2):108.https://doi.org/10.1029/2001jb001726
    Gong,W.,Jiang,X.D.,2017.Thermal Evolution History and Its Genesis of the Ailao Shan-Red River Fault Zone in the Ailao Shan and Day Nui Con Voi Massif during Oligocene-Early Miocene.Earth Science,42(2):223-239(in Chinese with English abstract).
    Guo,X.F.,Wang,Y.J.,Liu,H.C.,et al.,2016.Zircon U-Pb Geochronology of the Cenozoic Granitic Mylonite along the Ailaoshan-Red River Shear Zone:New Constraints on the Timing of the Sinistral Shearing.Journal of Earth Science,27(3):435-443.
    Imon,R.,Okudaira,T.,Kanagawa,K.,2004.Development of Shape-and Lattice-Preferred Orientations of Amphibole Grains during Initial Cataclastic Deformation and Subsequent Deformation by Dissolution-Precipitation Creep in Amphibolites from the Ryoke Metamorphic Belt,SWJapan.Journal of Structural Geology,26(5):793-805.https://doi.org/10.1016/j.jsg.2003.09.004
    Ji,S.C.,Mainprice,D.,1988.Natural Deformation Fabrics of Plagioclase:Implications for Slip Systems and Seismic Anisotropy.Tectonophysics,147(1-2):145-163.https://doi.org/10.1016/0040-1951(88)90153-9
    Ji,S.C.,Shao,T.B.,Michibayashi,K.,et al.,2013.A New Calibration of Seismic Velocities,Anisotropy,Fabrics,and Elastic Moduli of Amphibole-Rich Rocks.Journal of Geophysical Research(Solid Earth),118(9):4699-4728.https://doi.org/10.1002/jgrb.50352
    Ji,S.C.,Shao,T.B.,Michibayashi,K.,et al.,2015.Magnitudeand Symmetry of Seismic Anisotropy in Mica-and Amphibole-Bearing Metamorphic Rocks and Implications for Tectonic Interpretation of Seismic Data from the Southeast Tibetan Plateau.JournalofGeophysical Research(Solid Earth),120(9):6404-6430.https://doi.org/10.1002/2015jb012209
    Jiang,Z.T.,Prior,D.J.,Wheeler,J.,2000.Albite Crystallographic Preferred Orientation and Grain Misorientation Distribution in a Low-Grade Mylonite:Implications for Granular Flow.Journal of Structural Geology,22(11-12):1663-1674.https://doi.org/10.1016/s0191-8141(00)00079-1
    Jin,Z.M.,Ji,S.C.,Jin,S.Y.,1994.Lattice Preferred Orientation of Olivines and Seismic Anisotropy in the Upper Mantle.Acta Geophysica Sinica,37(4):469-477(in Chinese with English abstract).
    Jung,H.,Park,M.,Jung,S.,et al.,2010.Lattice Preferred Orientation,Water Content,and Seismic Anisotropy of Orthopyroxene.Journal of Earth Science,21(5):555-568.https://doi.org/10.1007/s12583-010-0118-9
    Kang,H.,Jung,H.,2019.Lattice-Preferred Orientation of Amphibole,Chlorite,and Olivine Found in Hydrated Mantle Peridotites from Bjrkedalen,Southwestern Norway,and Implications for Seismic Anisotropy.Tectonophysics,750:137-152.https://doi.org/10.1016/j.tecto.2018.11.011
    Kern,H.,Wenk,H.R.,1990.Fabric-Related Velocity Anisotropy and Shear-Wave Splitting in Rocks from the Santa Rosa Mylonite Zone,California.Journal of Geophysical Research,95:11213-11224.
    Kitamura,K.,2006.Constraint of Lattice-Preferred Orientation(LPO)on Vp Anisotropy of Amphibole-Rich Rocks.Geophysical Journal International,165(3):1058-1065.https://doi.org/10.1111/j.1365-246x.2006.02961.x
    Ko,B.,Jung,H.,2015.Crystal Preferred Orientation of an Amphibole Experimentally Deformed by Simple Shear.Nature Communications,6:6586.https://doi.org/10.1038/ncomms7586
    Kruse,R.,Stünitz,H.,1999.Deformation Mechanisms and Phase Distribution in Mafic High-Temperature Mylonites from the Jotun Nappe,Southern Norway.Tectonophysics,303(1-4):223-249.https://doi.org/10.1016/s0040-1951(98)00255-8
    Leloup,P.H.,Arnaud,N.,Lacassin,R.,et al.,2001.New Constraints on the Structure,Thermochronology,and Timing of the Ailao Shan-Red River Shear Zone,SEAsia.Journal of Geophysical Research(Solid Earth),106(B4):6683-6732.https://doi.org/10.1029/2000jb900322
    Leloup,P.H.,Kienast,J.R.,1993.High-Temperature Metamorphism in a Major Strike-Slip Shear Zone:The Ailao Shan-Red River,People’s Republic of China.Earth and Planetary Science Letters,118(1-4):213-234.https://doi.org/10.1016/0012-821x(93)90169-a
    Leloup,P.H.,Lacassin,R.,Tapponnier,P.,et al.,1995.The Ailao Shan-Red River Shear Zone(Yunnan,China),Tertiary Transform Boundary of Indochina.Tectonophysics,251(1-4):3-10,13-84.https://doi.org/10.1016/0040-1951(95)00070-4
    Licciardi,A.,Eken,T.,Taymaz,T.,et al.,2018.Seismic Anisotropy in Central North Anatolian Fault Zone and Its Implications on Crustal Deformation.Physics of the Earth and Planetary Interiors,277:99-112.https://doi.org/10.1016/j.pepi.2018.01.012
    Liu,J.L.,Cao,S.Y.,Zhai,Y.F.,et al.,2007.Rotation of Crustal Blocks as an Explanation of Oligo-Miocene Extension in Southeastern Tibet-Evidenced by the Diancangshan and nearby Metamorphic Core Complexes.Earth Science Frontiers,14(4):40-48.https://doi.org/10.1016/s1872-5791(07)60028-1
    Lloyd,G.E.,Butler,R.W.H.,Casey,M.et al.,2009.Mica,Deformation Fabrics and the Seismic Properties of the Continental Crust.Earth Planet.Sci.Lett,288:320-328.
    Lloyd,G.E.,Butler,R.W.H.,Casey,M.,et al.,2011.Constraints on the Seismic Properties of the Middle and Lower Continental Crust.Geological Society,London,Special Publications,360(1):7-32.
    Lloyd,G.E.,Farmer,A.B.,Mainprice,D.,1997.Misorientation Analysis and the Formation and Orientation of Subgrain and Grain Boundaries.Tectonophysics,279(1-4):55-78.https://doi.org/10.1016/s0040-1951(97)00115-7
    Mahan,K.,2006.Retrograde Mica in Deep Crustal Granulites:Implications for Crustal Seismic Anisotropy.Geophysical Research Letters,33(24):L24301.https://doi.org/10.1029/2006gl028130
    Mainprice,D.,1990.A FORTRAN Program to Calculate Seismic Anisotropy from the Lattice Preferred Orientation of Minerals.Computers&Geosciences,16(3):385-393.https://doi.org/10.1016/0098-3004(90)90072-2
    Mainprice,D.,Nicolas,A.,1989.Development of Shape and Lattice Preferred Orientations:Application to the Seismic Anisotropy of the Lower Crust.Journal of Structural Geology,11(1-2):175-189.https://doi.org/10.1016/0191-8141(89)90042-4
    Mehl,L.,Hirth,G.,2008.Plagioclase Preferred Orientation in Layered Mylonites:Evaluation of Flow Laws for the Lower Crust.Journal of Geophysical Research,113(B5):1-19.https://doi.org/10.1029/2007jb005075
    Melosha,B.L.,Rowe,C.D.,Gerbi,C.,et al.,2018.Seismic Cycle Feedbacks in a Mid-Crustal Shear Zone.Journal of Structural Geology,112:95-111.https://doi.org/10.1016/j.jsg.2018.04.004
    McNamara,D.D.,Wheeler,J.,Pearce,M.,et al.,2012.Fabrics Produced Mimetically during Static Metamorphism in Retrogressed Eclogites from the Zermatt-Saas Zone,Western Italian Alps.Journal of Structural Geology,44:167-178.https://doi.org/10.1016/j.jsg.2012.08.006
    Nyman,M.W.,Law,R.D.,Smelik,E.A.,1992.Cataclastic Deformation Mechanism for the Development of CoreMantle Structures in Amphibole.Geology,20(5):455.https://doi.org/10.1130/0091-7613(1992)020<0455:cdmftd>2.3.co;2
    Peltzer,G.,Tapponnier,P.,1988.Formation and Evolution of Strike-Slip Faults,Rifts,and Basins during the India-Asia Collision:An Experimental Approach.Journal of Geophysical Research(Solid Earth),93(B12):15085-15117.https://doi.org/10.1029/jb093ib12p15085
    Pennock,G.M.,Drury,M.R.,Peach,C.J.,et al.,2006.The Influence of Water on Deformation Microstructures and Textures in Synthetic NaCl Measured Using EBSD.Journal of Structural Geology,28(4):588-601.https://doi.org/10.1016/j.jsg.2006.01.014
    Rasolofosaon,P.N.J.,Rabbel,W.,Siegesmund,S.,et al.,2000.Characterization of Crack Distribution:Fabric Analysis versus Ultrasonic Inversion.Geophysical Journal International,141(2):413-424.https://doi.org/10.1046/j.1365-246x.2000.00093.x
    Rudnick,R.,Gao,S.,2003.Composition of the Continental Crust.Treatise Geochem.,3:1-64.
    Shapiro,N.M.,Ritzwoller,M.H.,Molnar,P.,et al.,2004.Thinning and Flow of Tibetan Crust Constrained by Seismic Anisotropy.Science,305(5681):233-236.https://doi.org/10.1126/science.1098276
    Sherrington,H.F.,Zandt,G.,Frederiksen,A.,2004.Crustal Fabric in the Tibetan Plateau Based on Waveform Inversions for Seismic Anisotropy Parameters.Journal of Geophysical Research(Solid Earth),109(B2):376.https://doi.org/10.1029/2002jb002345
    Skemer,P.,Karato,S.I.,2008.Sheared Lherzolite Xenoliths Revisited.Journal of Geophysical Research,113(B7):1-14.https://doi.org/10.1029/2007jb005286
    Skrotzki,W.,1992.Defect Structure and Deformation Mechanisms in Naturally Deformed Hornblende.Physica Status Solidi(a),131(2):605-624.https://doi.org/10.1002/pssa.2211310232
    Stünitz,H.,Gerald,J.D.F.,1993.Deformation of Granitoids at Low Metamorphic Grade.II:Granular Flow in AlbiteRich Mylonites.Tectonophysics,221(3-4):299-324.https://doi.org/10.1016/0040-1951(93)90164-f
    Sun,S.S.,Ji,S.C.,2011.On the Formation of Seismic Anisotropy and Shear Wave Splitting in Oceanic Subduction Zones.Geotectonica et Metallogenia,35(4):628-647(in Chinese with English abstract).
    Tapponnier,P.,Lacassin,R.,Leloup,P.H.,et al.,1990.The Ailao Shan/Red River Metamorphic Belt:Tertiary LeftLateral Shear between Indochina and South China.Nature,343:431-437.https://doi.org/10.1038/343431a0
    Tatham,D.J.,Lloyd,G.E.,Butler,R.W.H.,et al.,2008.Amphibole and Lower Crustal Seismic Properties.Earth and Planetary Science Letters,267(1-2):118-128.https://doi.org/10.1016/j.epsl.2007.11.042
    Warren,J.M.,Hirth,G.,2006.Grain Size Sensitive Deformation Mechanisms in Naturally Deformed Peridotites.Earth and Planetary Science Letters,248(1-2):438-450.https://doi.org/10.1016/j.epsl.2006.06.006
    Wheeler,J.,Prior,D.,Jiang,Z.,et al.,2001.The Petrological Significance of Misorientations between Grains.Contributions to Mineralogy and Petrology,141(1):109-124.https://doi.org/10.1007/s004100000225
    Xu,H.J.,Jin,S.Y.,Zheng,B.R.,2007.New Technique of Petrofabric:Electron Backscatter Diffraction(EBSD).Geoscience,21(2):213-225(in Chinese with English abstract).
    Zhang,J.F.,Wang,Y.F.,Jin,Z.M.,2007.Seismic Anisotropy of Ultrahigh Pressure Eclogite Induced by Deformation Fabric.Science in China(Series D:Earth Sciences),37(11):1433-1443(in Chinese).
    蔡周荣,向俊洋,黄强太,等,2018.红河断裂韧性剪切带内纳米颗粒的形态及其构造意义.地球科学,43(5):1524-1531.
    曹淑云,刘俊来,2006.岩石显微构造分析现代技术---EBSD技术及应用.地球科学进展,21(10):1091-1096.
    曹淑云,刘俊来,胡玲,2007.角闪石高温脆-韧性转变变形的显微与亚微构造证据---以滇西点苍山深变质剪切糜棱岩为例.中国科学(D辑:地球科学),37(8):1004-1013.
    宫伟,姜效典,2017.哀牢山-红河断裂带哀牢山-大象山段渐新世-早中新世热史演化及成因.地球科学,42(2):223-239.
    金振民,Ji,S.C.,金淑燕,1994.橄榄石晶格优选方位和上地幔地震波速各向异性.地球物理学报,37(4):469-477.
    孙圣思,嵇少丞,2011.大洋板块俯冲带地震波各向异性及剪切波分裂的成因机制.大地构造与成矿学,35(4):628-647.
    徐海军,金淑燕,郑伯让,2007.岩石组构学研究的最新技术---电子背散射衍射(EBSD).现代地质,21(2):213-225.
    章军锋,王永锋,金振民,2007.变形组构引起的超高压榴辉岩地震波速各向异性.中国科学(D辑:地球科学),37(11):1433-1443.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700