用户名: 密码: 验证码:
One-pot synthesis of Ag-rich AgPd alloy nanoactiniae and their enhanced electrocatalytic activity toward oxygen reduction
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:One-pot synthesis of Ag-rich AgPd alloy nanoactiniae and their enhanced electrocatalytic activity toward oxygen reduction
  • 作者:Xiaoyu ; Qiu ; Xiaohong ; Yan ; Ke ; Cen ; Huaifang ; Zhang ; Geng ; Gao ; Liangjun ; Wu ; Dongmei ; Sun ; Yawen ; Tang
  • 英文作者:Xiaoyu Qiu;Xiaohong Yan;Ke Cen;Huaifang Zhang;Geng Gao;Liangjun Wu;Dongmei Sun;Yawen Tang;Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University;Nanjing No.1 Middle School;Liyang Middle School of Jiangsu Province;
  • 英文关键词:Ag-rich alloy;;Ag_9Pd_1;;Hydrothermal synthesis;;Ligand and ensemble effects;;Oxygen reduction reaction
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University;Nanjing No.1 Middle School;Liyang Middle School of Jiangsu Province;
  • 出版日期:2019-01-15
  • 出版单位:Journal of Energy Chemistry
  • 年:2019
  • 期:v.28
  • 基金:sponsored by the National Natural Science Foundation of China (21576139, 21503111);; the Natural Science Foundation of Jiangsu Province (BK20171473);; the National and Local Joint Engineering Research Center of Biomedical Functional Materials, Natural Science Foundation of Jiangsu Higher Education Institutions of China (16KJB150020);; a project sponsored by the Priority Academic Program Development of Jiangsu Higher Education Institutions
  • 语种:英文;
  • 页:TRQZ201901015
  • 页数:7
  • CN:01
  • ISSN:10-1287/O6
  • 分类号:119-125
摘要
The electro-catalytic properties can be effectively optimized by designing bimetallic alloy nanoparticles with high-content less-active metal to enhance the competence of more-active noble metal. Herein, a one-pot hydrothermal approach is demonstrated for the controllable synthesis of Ag-rich Ag_9Pd_1 alloy nanoactiniae with obviously enhanced electro-catalytic activity(2.23 mA cm~(-2) at 0.85 V) and stability for oxygen reduction reaction. In alkaline solution, the ORR onset potential and half-wave potential of the Ag_9Pd_1 alloy nanoactiniae can reach a value of 1.02 V and 0.89 V, respectively, which origin from strong ligand and ensemble effects between Pd element and Ag element. The nanocrystals are uniformly alloyed, displaying a Ag_9Pd_1 combination, as displayed by an assembly of X-ray diffraction(XRD) spectrum,energy dispersive X-ray(EDX) analysis, and cyclic voltammetry(CV). This concept of tuning bimetallic alloy nanocrystals with low concentrations of more precious metal may be a promising approach to be applicable to a wide range of alloy nanocrystals.
        The electro-catalytic properties can be effectively optimized by designing bimetallic alloy nanoparticles with high-content less-active metal to enhance the competence of more-active noble metal. Herein, a one-pot hydrothermal approach is demonstrated for the controllable synthesis of Ag-rich Ag_9Pd_1 alloy nanoactiniae with obviously enhanced electro-catalytic activity(2.23 mA cm~(-2) at 0.85 V) and stability for oxygen reduction reaction. In alkaline solution, the ORR onset potential and half-wave potential of the Ag_9Pd_1 alloy nanoactiniae can reach a value of 1.02 V and 0.89 V, respectively, which origin from strong ligand and ensemble effects between Pd element and Ag element. The nanocrystals are uniformly alloyed, displaying a Ag_9Pd_1 combination, as displayed by an assembly of X-ray diffraction(XRD) spectrum,energy dispersive X-ray(EDX) analysis, and cyclic voltammetry(CV). This concept of tuning bimetallic alloy nanocrystals with low concentrations of more precious metal may be a promising approach to be applicable to a wide range of alloy nanocrystals.
引文
[1]N.Becknell,Y.Son,D.Kim,D.Li,Y.Yu,Z.Niu,T.Lei,B.T.Sneed,K.L.More,N.M.Markovic,V.R.Stamenkovic,P.Yang,J.Am.Chem.Soc.139(2017)11678-11681.
    [2]G.T.Fu,R.G.Ma,X.Q.Gao,Y.Chen,Y.W.Tang,T.H.Lu,J.M.Lee,Nanoscale 6(2014)12310-12314.
    [3]H.Huang,K.Li,Z.Chen,L.Luo,Y.Gu,D.Zhang,C.Ma,R.Si,J.Yang,Z.Peng,J.Zeng,J.Am.Chem.Soc.139(2017)8152-8159.
    [4]Y.T.Liang,S.P.Lin,C.W.Liu,S.R.Chung,T.Y.Chen,J.H.Wang,K.W.Wang,Chem.Commun.51(2015)6605-6608.
    [5]L.Xu,Z.Luo,Z.Fan,X.Zhang,C.Tan,H.Li,H.Zhang,C.Xue,Nanoscale 6(2014)11738-11743.
    [6]W.Zhang,X.Xu,C.Zhang,Z.Yu,Y.Zhou,Y.Tang,P.Wu,S.Guo,Small Method1(2017)1700167.
    [7]Q.Xue,G.Xu,R.Mao,H.Liu,J.Zeng,J.Jiang,Y.Chen,J.Energy Chem.26(2017)1153-1159.
    [8]H.Wu,T.Peng,Z.Kou,K.Cheng,J.Zhang,J.Zhang,T.Meng,S.Mu,J.Energy Chem.26(2017)1160-1167.
    [9]L.Chen,B.Huang,X.Qiu,X.Wang,R.Luque,Y.Li,Chem.Sci.7(2016)228-233.
    [10]S.Fu,C.Zhu,D.Du,Y.Lin,ACS Appl.Mater.Interfaces 7(2015)13842-13848.
    [11]N.Abbasi,P.Shahbazi,A.Kiani,J.Mater.Chem.A 1(2013)9966-9972.
    [12]M.Liu,Y.Lu,W.Chen,Adv.Funct.Mater.23(2013)1289-1296.
    [13]Z.Li,L.Ye,Y.Wang,S.Xu,F.Lei,S.Lin,RSC Adv.6(2016)79533-79541.
    [14]S.U.Lee,J.W.Hong,S.I.Choi,S.W.Han,J.Am.Chem.Soc.136(2014)5221-5224.
    [15]P.Aich,H.Wei,B.Basan,A.J.Kropf,N.M.Schweitzer,C.L.Marshall,J.T.Miller,R.Meyer,J.Phys.Chem.C 119(2015)18140-18148.
    [16]W.Wang,T.He,X.Liu,W.He,H.Cong,Y.Shen,L.Yan,X.Zhang,J.Zhang,X.Zhou,ACS Appl.Mater.Inter.8(2016)20839-20848.
    [17]K.Mori,M.Dojo,H.Yamashita,ACS Catal.3(2013)1114-1119.
    [18]C.J.Heard,S.Heiles,S.Vajda,R.L.Johnston,Nanoscale 6(2014)11777-11788.
    [19]P.Verma,Y.Kuwahara,K.Mori,H.Yamashita,J.Mater.Chem.A 4(2016)10142-10150.
    [20]M.Tsuji,C.Shiraishi,M.Hattori,A.Yajima,M.Mitarai,K.Uto,K.Takemura,Y.Nakashima,Chem.Commun.49(2013)10941-10943.
    [21]M.Tsuji,K.Takemura,C.Shiraishi,K.Ikedo,K.Uto,A.Yajima,M.Hattori,Y.Nakashima,K.Fukutomi,K.Tsuruda,J.Phys.Chem.C 119(2015)10811-10823.
    [22]X.Zhao,R.Long,D.Liu,B.Luo,Y.Xiong,J.Mater.Chem.A 3(2015)9390-9394.
    [23]P.Verma,Y.Kuwahara,K.Mori,H.Yamashita,J.Mater.Chem.A 3(2015)18889-18897.
    [24]J.Li,J.Liu,Y.Yang,D.Qin,J.Am.Chem.Soc.137(2015)7039-7042.
    [25]D.A.Slanac,W.G.Hardin,K.P.Johnston,K.J.Stevenson,J.Am.Chem.Soc.134(2012)9812-9819.
    [26]H.Jing,H.Wang,Chem.Mater.27(2015)2172-2180.
    [27]X.Y.Qiu,P.Wu,L.Xu,Y.W.Tang,J.M.Li,Adv.Mater.Inter.2(2015)1500321.
    [28]D.Bin,B.Yang,K.Zhang,C.Wang,J.Wang,J.Zhong,Y.Feng,J.Guo,Y.Du,Chem.-Eur.J.22(2016)16642-16647.
    [29]A.-K.Herrmann,P.Formanek,L.Borchardt,M.Klose,L.Giebeler,J.r.Eckert,S.Kaskel,N.Gaponik,A.Eychmu¨ller,Chem.Mater.26(2013)1074-1083.
    [30]C.Hu,X.Mu,J.Fan,H.Ma,X.Zhao,G.Chen,Z.Zhou,N.Zheng,ChemNanoMat2(2016)28-32.
    [31]Y.Lu,Y.Jiang,X.Gao,X.Wang,W.Chen,Part.Part.Syst.Char.33(2016)560-568.
    [32]J.Xu,G.Fu,Y.Tang,Y.Zhou,Y.Chen,T.Lu,J.Mater.Chem.22(2012)13585-13590.
    [33]L.Nahar,A.A.Farghaly,R.J.A.Esteves,I.U.Arachchige,Chem.Mater.29(2017)7704-7715.
    [34]N.M.Martin,M.Vanden Bossche,A.Hellman,H.Gr?nbeck,C.Hakanoglu,J.Gustafson,S.Blomberg,N.Johansson,Z.Liu,S.Axnanda,J.F.Weaver,E.Lundgren,ACS Catal.4(2014)3330-3334.
    [35]Y.J.Deng,V.Tripkovic,J.Rossmeisl,M.Arenz,ACS Catal.6(2016)671-676.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700